Systematic Debugging of Concurrent Systems
Using Coalesced Stack Trace Graphs

Diego Caminha B. de Oliveira!, Zvonimir Rakamarié¢!, Ganesh
Gopalakrishnan!, Alan Humphrey?, Qingyu Meng?, and Martin Berzins?

! School of Computing
University of Utah, USA
{caminha, zvonimir, ganesh}@cs.utah.edu
2 School of Computing and SCI Institute
University of Utah, USA
{ahumphre, qymeng, mb}@cs.utah.edu

Abstract. A central need during software development of large-scale
parallel systems is tools that help help to identify the root causes of
bugs quickly. Given the massive scale of these systems, tools that high-
light changes—say introduced across software versions or their operating
conditions (e.g., inputs, schedules)—can prove to be highly effective in
practice. Conventional debuggers, while good at presenting details at
the problem-site (e.g., crash), often omit contextual information to iden-
tify the root causes of the bug. We present a new approach to collect
and coalesce stack traces, leading to an efficient summary display of
salient system control flow differences in a graphical form called Coa-
lesced Stack Trace Graphs (CSTG). CSTGs have helped us understand
and debug situations within a computational framework called Uintah
that has been deployed at large scale, and undergoes frequent version
updates. In this paper, we detail CSTGs through case studies in the
context of Uintah where unexpected behaviors caused by different ver-
sions of software or occurring across different time-steps of a system (e.g.,
due to non-determinism) are debugged. We show that CSTG also gives
conventional debuggers a far more productive and guided role to play.

1 Introduction

There is widespread agreement that software engineering principles, including
systematic debugging methods, must be brought to bear on high-performance
computing (HPC) software development. HPC frameworks form the backbone
of all science and engineering research, and any savings in the effort to locate
and fix bugs in the short term, and maintain their integrity over the decades of
their lifetime maximizes the “science per dollar” achieved.

Formal analysis methods such as model-checking, symbolic analysis, and dy-
namic formal analysis [12] are among the plethora of recent efforts addressing
this need. With the growing scale and complexity of systems, most of these tech-
niques are not applicable on real deployed software, and hence of no direct value

to people in the debugging trenches of advanced HPC software—especially those
building computational frameworks.

Large-scale computational frameworks for are in a state of continuous devel-
opment, in response to new user applications, larger problem scales, as well as
new hardware platforms and software libraries. Tools that help expediently root-
cause bugs are crucially important. Conventional HPC-oriented debuggers have
made impressive strides in recent years (e.g., DDT [9] and RogueWave [19]).Un-
fortunately, debugging is never a linear story: the actual bug manifestation (e.g.,
a crash) may often have very little to do with the instructions present at the
crash site. A designer, in general, needs far more contextual information before
a bug is root-caused and corrected. Research on such error localization tools has
made inadequate progress compared to the growing needs of this area.

This paper makes a contribution in this area by proposing a simple, yet
versatile methodology for locating bugs with a useful amount of contextual in-
formation. Called Coalesced Stack Trace Graphs (CSTG), our mechanism offers
a succinct graphical display of a system execution focused on call paths to a set
of target functions chosen by a user. Using CSTGs involves three-steps: (1) a
user chooses target functions where stack trace collectors are automatically in-
serted, (2) our CSTG tool records the system behavior executing the inserted
collectors in these functions, and (3) succinctly displays the differences between
two such recordings over two scenarios. Typically, the target functions g; are
chosen based on the scenario/bug under investigation (e.g., the g; could be an
MPI messaging call or a hash-table insert call). Stack traces are then recorded
over a user-chosen period of the system run. Each such stack trace is a nest of
function calls f1, fo,..., g, for some target function gi. These call chains are
merged whenever we have the situation of f; calling f;11 from the same calling
context (i.e., program counter location).

Figs. 3 and 4 show CSTGs and their usages, which will be explained in much
greater detail in the coming sections. In particular, we illustrate how CSTGs
have helped during the development and analysis of Uintah [11], an open-source
extensible software framework for solving complex multiscale multi-physics prob-
lems on cutting edge HPC systems.

We present the following real bug case studies: (1) a problem in which a hash-
table lookup error was localized to a scheduler error, (2) an non-deterministic
crash which revealed no issues at the crash site (3) another crash we explored
using two different inputs applied to the same system version, and (4) an issue
debugged to be caused by mismatching MPI sends and receives. These case
studies show in detail how CSTGs have been used so far to better understand
(and in many cases root-cause) these bugs.

2 Related Work

(A preliminary version of this paper for an HPC-oriented audience has appeared
n [14]; this paper is an extended version.)

A stack trace is a sequence of function calls active at a certain point in
the execution of a program. Stack traces are commonly used to observe crashes

and identify likely causes. There are empirical evidences that show that they
help developers to fix bugs faster [21]. They are also often leveraged in parallel
debugging. For instance, STAT [2] uses stack traces to present a summary view of
the state of a distributed program at a point of interest (often around hangs). It
works by building equivalence classes of processes using stack traces, showing the
split of these equivalence classes into divergent flows using a prefiz tree. STAT
corresponds well to the needs of MPI program debugging due to the SPMD
(single program, multiple data) nature of MPI programs resulting in a prefix tree
stem that remains coalesced for the most part. Debugging is accomplished by
users noticing how process equivalence classes split off, and then understanding
why some of the processes went with a different equivalence class.

Spectroscope [20] is another tool based on stack trace collection, where the
emphasis is on performance anomaly detection. It works by comparing request
flows (i.e., paths taken by the requests and time separations) across two execu-
tions. There are also efforts around the Windows Error Reporting system which
helps analyze crash logs [3,8,13,15]. More recent anomaly detection methods
involve clustering and machine learning, and have located errors by identifying
the least progressed of threads [7].

Synoptic [5] and Dynoptic [6] are tools that mine a model of the system
from system execution logs. Synoptic mines a finite state machine (FSM) model
representations of a sequential system from its logs capturing event orderings
as invariants. Dynoptic mines a communicating FSM model from a distributed
system. These systems have not been applied to large-scale code bases such as
Uintah, and have not been demonstrated with respect to various modalities of
differential exploration that we have investigated.

CSTGs are effectively used on
anomaly detection based on the gen-
eral approach of comparing two dif-
ferent executions or program versions,
also known as delta debugging [24].
There are tools that spot behavioral
differences such as RADAR [17]. How-
ever, they use different data and visu-
alization methods. One novelty of our
proposed method is using stack traces
Fig. 1. CSTGs of a Simple Working (left) as the main source of information in
and Crashing (right) Program Runs the delta debugging process. Imagine

a simple scenario where a program is
run twice, the first time successfully, but the second time crashing just after
making MPI Send and Recv calls. Fig. 1 summarizes these executions in terms
of a CSTG. The differences between the call paths leading to the Send and Recv
are highly likely to play a significant role in identifying the root-cause of the
bug, as our case studies show later.

Fig. 2. Different Stack Trace Viewing Methods

2.1 Stack Trace Structures

One can roughly classify previous stack trace structures [1] into three classes
as illustrated in Fig. 2. In Dynamic Call Trees (DCT), each node represents
a single function activation. Edges represent calls between individual function
activations. The size of a DCT is proportional to the number of calls in an
execution. In Dynamic Call Graphs (DCG), each node represents all function
activations. Edges represent calls between functions. The size of a DCG grows
with the number of unique functions invoked in an execution. In Calling Context
Trees (CCT), each node represents a function activation in a unique call chain.
Edges represent calls between function activations from different call chains.
CCT is a projection of a dynamic call tree that discards redundant contextual
information while preserving unique contexts.

3 Coalesced Stack Trace Graphs (CSTGQG)

Different from the previously described structures, CSTGs do not record every
function activation, but only the ones in stack traces leading to the user-chosen
function(s) of interest (see Fig. 2). Each CSTG node represents all the activa-
tions of a particular function invocation. Hence, in addition to function names,
CSTG nodes are also labeled with unique invocation IDs. Edges represent calls
between functions. The size of a CSTG is determined by the number of nodes
(function call sites) encountered across the paths reaching the observation points
of interest. In our experience, this size has been modest.

The feature of not recording every function activation is crucial to reduce the
overhead and improve scalability. Many stack-trace-based methods, especially
those used for performance measurement, employ sampling and record only a
small percentage of all function activations. However, given that debugging is
our end goal, doing sampling and not recording every call can potentially result
in crucial information being missed. Hence, we choose to record every stack
trace leading to the few user-chosen functions of interest. We also found such
user input to be crucial in taming CSTG size since typically tracking only a
small portion of program functions suffices to understand and root-cause a bug.
Tracking all function invocations from a large program in a CSTG graph would
significantly increase the effort necessary to understand the collected graphs, not
to mention the difficulty of root-causing bugs.

There are many scenarios where CSTGs can be used, some of which are
illustrated in this paper. Here we list some of these scenarios. Using CSTGs, one
can make comparisons accross different:

— versions of a system (§5.1, Case Study 1);
— runs of the same system to understand the effects of nondeterminism (§5.1,

Case Study 2);

— inputs (§5.1, Case Study 3);
— matching events such as allocate/free, open/close, lock/unlock, send/receive

(85.2, Scenario 1);

— time-steps, loop iterations, or cycling events;
— processes and threads.

3.1 Formal Definition

Consider an execution of an arbitrary sequential or concurrent program with a set
of instructions {p1, pa, ..., pn } that collect stack traces. Executing an instruction
p; returns a snapshot s, of the currently active call stack, i.e., it returns a stack
trace. Each s, is a stack of function names paired with their calling context?:
sk = (fi 1 c1),{fa : c2),..., (frop—1 * CTop—1), {(frop : CTop). Here, for every
(fi : ¢;) in sy, where i # Top, ¢; is the context (i.e., line number) within function
fi from which f;4; is invoked. f7,, is the function within which an instruction p;
occurs and cr,p, is context within function fr,, from which the instrumentation
p; is executed. Now, given the stack traces s1, S2,..., Sy, we define a coalesced
stack trace graph (CSTG) over these traces as follows:

— For each (f; : ¢;) present in some stack trace s, introduce the node (f; : ¢;).

This node represents all the (f; : ¢;) instances present across the stack traces.

— Whenever a stack trace has two adjacent entries (f;_1 : ¢;—1) and (f; : ¢;),
introduce a directed edge from the latter to the former, weighted by the
number of times such edge occurs across all stack traces.

As an illustration, in Fig. 3 there were 76 (left CSTG) and 77 (right CSTG)
stack traces collected during the respective executions. The stack trace collec-
tion instructions were injected into functions DW: :put (), DW: :reduceMPI() and
DW: :override (). Each (function : context) pair only appears once in the CSTG
(some contexts were omitted for simplicity); functions do appear more than once
when they have different contexts (e.g., AMRSim: :run()). Edge weights repre-
sent the number of times a consecutive pair of elements occurred across all stack
traces.

4 Driving Example: Uintah HPC Framework

Uintah serves as a non-trivial test-bed for our work, given its complexity and con-
tinuing development both in terms of applications and in terms of parallel scala-
bility. Uintah is an open-source, extensible software framework for solving com-
plex multiscale multi-physics problems on cutting edge HPC systems [22]. The

3 Say, the line number where the call to the next function in the stack is made or the
instrumentation code is found.

class of problems solved by Uintah includes fluid, structure, and fluid-structure
interaction problems, both with and without adaptive mesh refinement [4]. The
framework has been in constant development and improvement over the past 10
years and now has about 1M lines of code and comments, and runs in a scalable
manner on machines such as DOEs Titan at Oak Ridge National Laboratory
and Mira at Argonne National Laboratory [16].

To promote reuse, easier maintenance, and extensibility, the developers of
Uintah adopted component-based software engineering approach early on. A
component-based design of Uintah enforces separation between large entities of
software that can be swapped in and out, allowing them to be independently
developed and tested within the entire framework. In addition, such modular
software architecture promotes a clear separation of domain expert and infras-
tructure developer concerns.

Uintah employs a task-graph-based specification of the (sequential) user ap-
plication code that is executed via a highly parallel task-based runtime system.
Such an approach enables domain expert users to focus on what they know best,
which is implementing sequential simulations components. At the same time,
the runtime system can be independently improved without changing the user
code as it relies only on the task abstraction and not on the details of what the
tasks actually do. This distinction is important as it allows the parallel infras-
tructure components to be improved by computer scientists, who do not have to
understand the simulation components in detail.

5 Case Studies

5.1 Root Cause Analysis of Uintah Bugs

The case studies we detail in this section focus on root-causing real bugs present
in previous versions of Uintah. We leveraged traditional techniques, such as the
use of printfs and a debugger (Allinea DDT [9]), in conjunction with CSTGs
during the debugging process. All the debugging was carried out by a non-
developer of the Uintah code-base who only had very limited knowledge of the
overall Uintah code. The source code of Uintah and our CSTG-based tool, as
well as the full graphs of our case studies are available online.*

Case Study 1: Mini Coal Boiler The Mini Coal Boiler problem is a real-
world example modeling a smaller-scale version of the PSAAP [18] target prob-
lem that simulates coal combustion under oxy-coal conditions. This case study
illustrates a typical scenario of a system under constant development in which a
new component replacing an existing one causes a bug. We root-caused this bug
using CSTGs to compare different versions of this Uintah simulation.

Uintah simulation variables are stored in a data warehouse. The data ware-
house is a dictionary-based hash-map which maps a variable name and simulation

4 http://gdurl.com/pxPm/download. For the ease of presentation, we simplify many
of the function and variable names involved.

void DW:: get (ReductionVariableBase& var,
const VarLabelx label ,
const Levelx level,
int matlIndex /= —1x/) {

if (!d_-levelDB.exists (label , matllndex, level)) {
THROW(UnknownVariable (label —>getName () ,

getID (), level , matllndex, ”“on.reduction”,
__FILE__, __LINE__));

}
Listing 1.1. Uintah Code Excerpt where the Mini Coal Boiler Exception is Thrown.

patch id to the memory address of a variable. When running Uintah on the Mini
Coal Boiler problem, an exception is thrown in the data warehouse function
DW::get (). After studying the code (see Listing 1.1), we discovered that the
problem is caused by the triple (1abel, matlIndex, level) not being found
in the hash table d_levelDB. However, the same error does not occur when using
a different Uintah scheduler component.

At such a juncture, it is quite likely that an HPC developer equipped with a
debugger such as DDT or RogueWave would derive no benefit from the power
and sophistication of the debugger. They would likely have to fall back to using
printfs. We show that CSTGs offer a better path.

One can think of two possible reasons why this element was not found in the
data warehouse: either it was never inserted, or it was prematurely removed from
it. With this line of investigation in mind, we proceed by inserting our CSTG
stack trace collectors before every put() and remove() call of the hash table
d_levelDB. Whenever one of these locations is reached during an execution, a
stack trace is collected to create a CSTG. The leaves of the generated CSTGs are
unique places where the collectors were added. We run Uintah twice, each time
with a different version of the scheduler (i.e., buggy and correct), and collect
stack traces visualized as CSTGs. Fig. 3 shows the CSTGs of the working and
crashing executions.

It is not necessary to see all the details® in these CSTGs: it is apparent that
there is a path to reduceMPI () in the working execution that does not appear in
the crashing one. Fig. 4 focuses on that difference—the extra green path does not
occur in the crashing execution. (The other difference is related to the different
names of the schedulers.) By examining the path leading to reduceMPI(), we
observe in the source code that the new, buggy scheduler never calls function
initiateReduction() that would eventually add the missing data warehouse
element causing the crash. Since the root cause of this bug is distant from the
actual crash location, traditional debugging methods would not have been able
to offer such useful contextual information that CSTGs provided.

® The zoomed out region of the CSTGs contains no information relevant for this study.

J/sus 1
)

70

\ [AMRSim::run+A | [AMRSim::run+B | DW::override

DW::override

J/sus |
|

69

4 4

| AMRSim::run+A | | AMRSim::run+B

4 69 4 70
| AMRSim::executeTimestep | | AMRSim::dolnitial Timestep | AMRSim::executeTimestep AMRSim::dolnitial Timestep
4 69 4 69 1
| UnifiedScmer::execu:e | MPIScheduler::execu(N_B‘ MPIScheduler::execute+A
73 73 1

| UnifiedScheduler::runTask | | MPIScheduler::runTask | | MPIScheduler::initiateReduction |

N 73 1
- - | DetailedTask::doit+A | | MPIScheduler::runReductionTask |
DetailedTask::doit
73 1

DW::reduceMPI+

Fig. 3. Mini Coal Boiler Case Study CSTGs. Crashing execution is on the left and
working execution is on the right. CSTGs contain all the paths leading to the instru-
mentations added before the put () and remove() calls of the hash table d_1evelDB.

Case Study 2: Poisson2 The Poisson2 problem is the second of four Uin-
tah examples that solve Poisson’s equation on a grid using Jacobi iteration,
and each example exercises specific portions of the infrastructure. In this ex-
ample, Poisson’s equation is discretized and solved using an iterative method.
The Poisson?2 problem employs the Uintah’s sub-scheduler feature that enables
finer iteration within a given simulation timestep of the top-level scheduler. It
exercises a bug causing nondeterministic crashes during Uintah runs—a seg-
mentation error occurs in the scheduler component of Uintah, more precisely in
function resetWaittime(). In this scenario, we leveraged CSTGs to compare
different, nondeterministic runs of the same version of the system.

Our root-cause exploration proceeded as follows. First, we investigated func-
tion resetWaittime (double), where we noticed nothing out of the ordinary—
there is only a simple assignment to the variable d_waitstart, as in Listing 1.2.
Then, after running Uintah a few times on the same input, we noticed that
the crash is nondeterministic: it typically occurs (in time-steps 1 or 2), but not
always. Next, we decided to leverage our CSTGs to investigate this problem
further. We added stack trace collectors to observe the execution history and
paths leading to the crashing function resetWaitTime (). In this case study, we

’ AMRSim::run+C

’ AMRSim::run+A ‘ ’ AMRSim::run+B "AMRSim::run+D

’ AMRSim::run+E

0 11 0 0 0
A1
’ AMRSim::executeTimestep ’ AMRSim::dolnitial Timestep DW::override
9 1

A
‘ MPIScheduler::execute+A ‘

l3 |
v

UnifiedScheduler::runTask ‘ MPIScheduler::initiateReduction

‘ MPIScheduler::execute+B UnifiedScheduler::execute

‘ MPIScheduler::runTask

1
A
‘ MPIScheduler::runReductionTask

o r

‘ DW::reduceMPI ‘

Fig. 4. Mini Coal Boiler Case Study CSTG Delta. It highlights the differences between
the CSTGs in Fig. 3.

observe executions of the same system version where the crash does and does
not happen.

Fig. 5 shows the CSTG delta resulting from these collections. We immediately
learn that the crashing run contains the user-provided function Poisson2: :timeAdvance ()
that is executed every time-step; however, only once does timeAdvance() in-
voke the observed function resetWaittime(). (It is worth remembering that
functions are not recorded when invoked, but only when/if a collection point
is reached.) Armed with much better understanding of when exactly the crash
occurs, we switched to using a debugger to step through the code. We observed
that the value of the variable numThreads_ is abnormally high in the function
execute () on the crashing path. There are two common reasons why this hap-
pens: either the variable is uninitialized or it suffers memory corruption.

Further exploration of the source code reveals that numThreads_ is indeed
never initialized before being used for the first time. While an initial value of an
uninitialized variable is often zero, that is not guaranteed by the compiler—
hence the nondeterministic behavior we observed. When the initial value of

void UnifiedSchedulerWorker :: resetWaittime (double start) {
d_waitstart = start; // crashing point
d_waittime = 0.0;

}

Listing 1.2. Uintah Code Excerpt where the Poisson2 Crash Occurs.

StandAlone/sus [0x40644d]

| AMRSimulationController::run+0xf9a

]

0 | AMRSimulationController::executeTimestep+0x2a6

| AMRSimulationController::run+0x2eb

|AMRSimuln[innConlroIler::doIni(ialTimes(ep+()x6()1 | s

Poisson2::timeAdvance+0x362

FnifiedScheduler::execule+0x9&0

¥

| UnifiedSchedulerWorker::resetWaittime

Fig. 5. Poisson2 Case Study CSTG Delta. There are 3 paths leading to the observed
function in the crashing run, but only 2 paths in the non-crashing run. The extra path
is highlighted in green.

numThreads_ happens to be zero, resetWaittime () is not invoked. Occasion-
ally, when the initial value is not zero, resetWaittime() is invoked and the
crash happens soon thereafter. Note that resetWaittime() gets invoked several
times from different parts of the code, but only once through the problematic
path leading to the crash, as clearly shown in Fig. 5. As it turns out, the vari-
able d_waitstart is only allocated and numThreads_ initialized in the function
problemSetup() that never gets invoked.

As an additional exercise, we used Valgrid [23] to expose this problematic
usage of an uninitialized variable. And while Valgrind was successful in locating
the problem, it took us several days to reach that point due to the large perfor-
mance overhead of using Valgrind— each Uintah run took several hours to finish.
Collecting CSTGs, on the other hand, incurs almost no performance overhead
(see §7) and provides us with more contextual information than Valgrind.

clone+0x6d StandAlone/sus [0x40644d] |

.

| Uintah::Task::doit+0x9e

1 l -18

Uintah::Task::Action4::doit+0xce

| 4
Uintah::Task::Action1::doit+0x98

1 Uintah::Ray::coarsen_Q+0x21f -6 \
4

Uintah::Ray::refine_Q+0x491 l |Uinlah::Ray::rayTrace+0x3eS |Uin(ah::Ray::rayTrace+0x44S |

| Uintah::Task::Action5::doit+0xdb

Uintah::Ray::rayTrace+0x4a5

1 | void Uintah::fineToCoarseOperator+0x1lad

Uintah::OnDemandDataWarehouse::getRegion+

Fig. 6. Arches Case Study CSTG Delta Comparing Runs on Different Input Files.

To summarize, this is a user-introduced bug related to incorrect usage of the
Uintah system. It is nondeterministic in nature, and hence could have stayed
dormant for a long time. The use of CSTGs, and especially the ability to compare
across two different executions, helped us to root-cause this bug. The synergistic
role of a traditional debugger is also apparent, and such versatile solutions to
root-cause bugs are paramount to improving the productivity of HPC developers.

Case Study 3: Arches Our third case study examines a radiative heat trans-
fer benchmark simulation using the Arches component, which was designed for
the simulation of turbulent reacting flows with participating media radiation.
During this Uintah simulation, an exception is thrown in the data warehouse
function getRegion(). After we performed the initial inspection of the source
code, we observed that the problem is related to simulation patches and grid
regions. However, the exact details were unclear. Here, we leveraged CSTGs to
compare runs on slightly different inputs. In particular, we managed to only
slightly modify the input to obtain a run that finishes without a crash.

A typical input file of Uintah contains many parameters defining grid values,
variables, algorithms, and components used in setting up simulations. In this
case study, we changed the problematic input file, modifying several parameters
that we suspected were related to the crash. Varying these parameters, we were
able to obtain an input that does not cause the crash and finishes normally.

We then generated CSTGs using the two different input file versions to com-
pare the executions. Fig. 6 shows the CSTG delta. The paths traversing the green
nodes only happen in the crashing run. Hence, our hypothesis was that there
was something wrong in one of the functions belonging to these paths. Report-
ing back to the Uintah developers, we were able to confirm that the function
Uintah: :Ray::refine_Q() was calling getRegion() with wrong parameters,
which resulted in this crash.

5.2 Other Usage Scenarios

We listed many envisioned CSTG usage scenarios in §3, some of which we covered
in the previous section. Due to lack of space, we now only briefly present two
additional CSTG usage scenarios.

Scenario 1: Matching Events In this scenario, we are leveraging CSTGs to
observe call paths leading to MPI_Isend and MPI_Irecv in Uintah. In a typical
message passage application, the number of message sends and receives should
match. But in this case, we can notice from CSTGs that they do not match
by looking at the incoming edges and their degrees (denoted with numbers on
the edges). Similar CSTGs can be used as initial points of investigations of
mismatches in the number of matching events.

Scenario 2: Same Inputs, Different Outputs In this scenario, we obtained
two different versions of the GNU lexical analyzer Flez from the Software-artifact
Infrastructure Repository [10]. For a particular input, these two versions were
unexpectedly printing different outputs. We leveraged CSTGs to observe the call
paths leading to the print character function in Flex called outc (). The CSTG
delta clearly marks a path that occurs three times less in the execution of one
version of Flex versus the other. We confirmed that this call path contains the
modified code that generated the different output.

6 Implementation Details

In our current implementation of CSTGs in the context of Uintah running MPI
on several nodes, we collect stack traces separately at every process. We achieve
this by invoking the backtrace() function (from ezecinfo.h) each time a stack
trace collection instruction is executed. An example of a stack trace collected is:

stack_trace:

MPIScheduler: :postMPISends(DetailedTask*, int)+0xalb
MPIScheduler: :runTask(DetailedTask*, int)+0x3b7
MPIScheduler: :execute(int, int)+0x78f
AMRSimulationController: :executeTimestep(double)+0x2a6
AMRSimulationController: :run()+0x103b

StandAlone/sus() [0x4064d2]

__libc_start_main()+0Oxed

StandAlone/sus() [0x403469]

[l Overhead of creating CSTGs

ié’ [0 Total time without instrumentation
S 70 100 800 1000
O
Q
%)
£ 354 50 400 500
(]
£
~ oo , 0 0 0
< 3 <3 <3 s 3
2 0 C s 0 C s 0 C 2 o C
2ege dEEE 3EEE 3ffe
g3 = =872 =]
(= 7] O s O O s o i)
= own 2 o wn 2 own 2 o0
Z O - O - O Z O
Q Q [Q
w w wn w
o e IS S
2x2 5x2 50x2 500x2

Number of (Processes x Threads)

Fig. 7. Scaling Experiments Showing Overhead of CSTG Creation.

Each line in the stack trace is comprised of a complete function signature and a
hexadecimal address indicating the calling context of the next called function.

We collect such stack traces to create a CSTG in memory at each process.
After processing each stack trace, the current CSTG is updated with new nodes
and/or edge-weights; the stack trace is then discarded. The cost of creating a
CSTG is equal to maintaining a hash table, so the complexity is O(NN) on average
for N stack traces collected. Hence, CSTGs are memory efficient. At the end of
an execution, per-process CSTGs are merged into one global graph. The merge
operation itself is simple: if an edge already exists, its weight is incremented, and
otherwise a new edge is added. Finally, we compare CSTGs by creating a graph
diff, showing weight deficits as negative numbers (on red edges) and excesses as
positive numbers (on green edges).

7 Scaling Experiments

In this section, we present preliminary scaling studies of the viability of us-
ing CSTGs at larger scale, approaching 1,000 nodes. In the scaling studies, we
used the same stack trace collection points as before (namely put () as in Mins
Coal Boiler, resetWaitTime() as in Poisson2, getRegion() as in Arches, and
Send/Recv as in Mathing Events), albeit a different Uintah input file that was
easy to scale. We compare pure Uintah runtimes with runtimes when the code
was instrumented, stack traces collected, CSTGs created in memory, and graph
files written to disk. The used input files do not produce crashes so that we can
run the simulations to completion and build the full CSTGs. The experiments
were performed on a cluster with 66 nodes, each node with 4 AMD Opteron
Magny-Cours 6164HE 12-core 1.7GHz CPUs, 64GB RAM, 7200RPM SATA2
hard drives, and 10 Gigabit Ethernet.

Fig. 7 shows that the overhead of collecting stack traces and creating CSTGs
in memory for various collection points. The overhead is very small (less than

1% in average) in all the scenarios tested, and clearly our solution scales well
in practice. The time to collect a stack trace depends of the number of stack
frames to be transversed. However, the time to collect the same stack trace is
constant throughout the execution of the program. The complexity of creating
a CSTG with N stack traces is N - ©(1), or O(N) on average, which is related
to maintaining a hash table. In addition, there is no communication between
processes involved (each process creates its own CSTG merged in the end),
and the final files written are quite small (negligible I/O demand). Hence, the
total overhead of creating CSTGs primarily depends on the number of stack
traces collected, which changes depending on the simulated problem and inserted
collection points. In our experiments, the number of stack traces collected per
run ranges from 150 to 322,000. To conclude, our preliminary scaling studies
show the feasibility of employing CSTGs without significant overhead in parallel
HPC computational frameworks such as Uintah.

8 Conclusions

Finding the root-causes of bugs in the context of large-scale HPC projects is
highly resource-intensive: it takes lead developers away from doing useful science,
and engages them in a “fire-fighting” frenzy. Often, the actual bug manifestation
(e.g., a crash site) has scanty information pertaining to its root-cause. In this
paper, we propose a facility for expeditiously debugging sequential and parallel
programs called Coalesced Stack Trace Graphs (CSTG). Our approach relies
on finding salient differences in executions using CSTGs, and possible scenarios
include comparing: different versions of a system, runs of the same system to
understand the effects of nondeterminism, runs on different inputs, matching
events such as message sends/receives, and different time-steps, loop iterations,
or processes.

In the traditional debugging process, as a user gains knowledge about the
problem at hand, he/she can use CSTGs to provide the necessary contextual in-
formation and greatly accelerate the identification of the root-cause. We demon-
strated the applicability of CSTGs in several real bug case studies, primarily in
the context of Uintah, an open-source software framework for solving complex
multiscale multi-physics problems on cutting edge HPC systems. Our implemen-
tation of CSTGs is simple, has low overhead, and scales well in practice. It can
be used in many scenarios to help in the debugging process of concurrent or
sequential software, and despite most of our case studies were applied to Uintah,
it does not depend on it as we illustrated with our Flex case study.

References

1. G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. In PLDI, pages 85-96, 1997.

2. D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz.
Stack trace analysis for large scale debugging. In IPDPS, pages 1-10, 2007.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett, D. Grant, S. Calinoiu, and G. Loihle.

Finding similar failures using callstack similarity. In Workshop on Tackling Com-
puter Systems Problems with Machine Learning Techniques (SysML), 2008.

M. Berzins. Status of release of the Uintah computational framework. SCI Tech-
nical Report UUSCI-2012-001, 2012.

I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E. Anderson.
Mining temporal invariants from partially ordered logs. In SLAML, 2011.

I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst. Leveraging
existing instrumentation to automatically infer invariant-constrained models. In
FSE, pages 267-277, 2011.

G. Bronevetsky, I. Laguna, S. Bagchi, B. de Supinski, D. Ahn, and M. Schulz. Au-
tomaDeD: Automata-based debugging for dissimilar parallel tasks. In Dependable
Systems and Networks (DSN), pages 231-240, 2010.

Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. Rebucket: A method for
clustering duplicate crash reports based on call stack similarity. In ICSE, pages
1084-1093, 2012.

Allinea DDT. http://www.allinea.com/products/ddt.

. H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal, 10(4):405-435, 2005.

J.D.d. S. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson. Uintah: A
massively parallel problem solving environment. In IEEE International Symposium
on High Performance Distributed Computing (HPDC), pages 33—41, 2000.

G. Gopalakrishnan, R. M. Kirby, S. Siegel, R. Thakur, W. Gropp, E. Lusk, B. R.
De Supinski, M. Schulz, and G. Bronevetsky. Formal analysis of MPI-based parallel
programs. Communications of the ACM, 54(12):82-91, Dec. 2011.

S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging in the
large via mining millions of stack traces. In International Conference on Software
Engineering (ICSE), pages 145-155, 2012.

A. Humphrey, Q. Meng, M. Berzins, D. C. B. de Oliveira, Z. Rakamari¢, and
G. Gopalakrishnan. Systematic debugging methods for large scale HPC computa-
tional frameworks. Computing in Science and Engineering, 16(3):48 — 56, 2014.
S. Kim, T. Zimmermann, and N. Nagappan. Crash graphs: An aggregated view of
multiple crashes to improve crash triage. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 486-493, 2011.

Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins. Investigating applications
portability with the Uintah DAG-based runtime system on petascale supercom-
puters. Technical Report UUSCI-2013-003, SCI Institute, Utah, 2013.

F. Pastore, L. Mariani, and A. Goffi. Radar: A tool for debugging regression prob-
lems in C/C++ software. In International Conference on Software Engineering
(ICSE), pages 1335-1338, 2013.

Cleaner, Cheaper Energy is Goal of Supercomputer Research. http://unews.
utah.edu/news_releases/16m-for-coal-energy-research/.

Rogue Wave Software. http://www.totalviewtech. com.

R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman, M. Stroucken,
W. Wang, L. Xu, and G. R. Ganger. Diagnosing performance changes by comparing
request flows. In NSDI, pages 4-4, 2011.

A. Schroter, N. Bettenburg, and R. Premraj. Do stack traces help developers
fix bugs? In Working Conference on Mining Software Repositories (MSR), pages
118-121, 2010.

22. Uintah. http://www.uintah.utah.edu/.

23. Valgrind. http://valgrind.org.

24. A. Zeller. Yesterday, my program worked. Today, it does not. Why? In F'SE, pages
253-267, 1999.

