
Shared memory consistency protocol verification against
weak memory models: refinement via model-checking?

Prosenjit Chatterjee, Hemanthkumar Sivaraj and Ganesh Gopalakrishnan
http://www.cs.utah.edu/formal verification/cav02.html

{prosen| hemanth| ganesh}@cs.utah.edu

School of Computing, University of Utah

Abstract. Weak shared memory consistency models, especially those
used by modern microprocessor families, are quite complex. The bus
and/or directory-based protocols that help realize shared memory mul-
tiprocessors using these microprocessors are also exceedingly complex.
Thus, the correctness problem – that all the executions generated by the
multiprocessor for any given concurrent program are also allowed by the
memory model – is a major challenge. In this paper, we present a formal
approach to verify protocol implementation models against weak shared
memory models through automatable refinement checking supported by
a model checker. We define a taxonomy of weak shared memory mod-
els that includes most published commercial memory models, and detail
how our approach applies over all these models. In our approach, the
designer follows a prescribed procedure to build a highly simplified in-
termediate abstraction for the given implementation. The intermediate
abstraction and the implementation are concurrently run using a model-
checker, checking for refinement. The intermediate abstraction can be
proved correct against the memory model specification using theorem
proving. We have verified four different Alpha as well as Itanium mem-
ory model implementations1against their respective specifications. The
results are encouraging in terms of the uniformity of the procedure, the
high degree of automation, acceptable run-times, and empirically ob-
served bug-hunting efficacy. The use of parallel model-checking, based
on a version of the parallel Murϕ model checker we have recently de-
veloped for the MPI library, has been essential to finish the search in a
matter of a few hours.

1 Introduction

Modern weak shared memory consistency models [1–4] allow subtle reorderings
among loads and stores falling into multiple storage classes to permit aggres-
sive compiler optimizations, hide load latencies, and maintain I/O semantics as

? This work was supported by NSF Grants CCR-9987516 and CCR-0081406
1 We designed both these protocols - one with a split-transaction bus and one with

Scheurich’s optimization - as there are no public domain Itanium protocols as far as
we know.

well as legacy compatibility. Since these specifications are the basis for many
generations of microprocessors, manufacturers are committed to formal meth-
ods for specifying them. Unfortunately, simple and intuitive formal specification
methods that apply across a wide range of weak memory models are yet to be
developed. In this paper, we address this problem and propose a parameterizable
operational model that can cover a wide range of modern weak memory models.
The bus and/or directory-based protocols that help realize shared memory mul-
tiprocessors using modern microprocessors are also exceedingly complex. Thus,
in addition to the specification problem, formal verification of shared memory
consistency protocols against weak shared memory models remains largely un-
solved [2, 5]. Most reported successes have been either for far simpler memory
models such as cache coherence or sequential consistency (e.g., [6–9]), or ap-
proaches that took advantage of existing architectural test program suites and
created finite-state abstractions for them [10].

In this paper, we present a methodology that systematically applies to a wide
spectrum of weak architectural memory consistency models. Basically, we instan-
tiate our parameterizable operational model to obtain a finite-state approxima-
tion to the weak memory model of interest. We then take the finite-state model of
the protocol under verification, and subject these models to ‘lockstep’ execution,
to check for a simulation (refinement) relation: whether an event that can be fired
on the interface of the implementation can be accepted by the specification. The
execution happens within the explicit-state enumeration model-checker Murϕ
that we have recently ported to run on our in-house Network Testbed2 using
the MPI library. We demonstrate our results on four different Alpha as well as
Itanium memory model implementations against their respective specifications.
The results are encouraging in terms of reduced effort, potential for reuse of
models, the degree of automation, run-times, and bug-hunting efficacy (it found
many subtle coding errors). To the best of our knowledge, no other group has
hitherto verified this variety of protocols against modern weak memory models.
Approach to verification: Instead of using a model-checker to verify a tempo-
ral logic formula, we use it to check for the existence of a refinement mapping be-
tween an implementation model and an abstract model. While operational mod-
els are well suited for this purpose, if they are non-deterministic, an inefficient
backtracking search would be needed. To illustrate this difficulty, consider one
source of internal non-determinism - namely local bypassing (otherwise known
as read forwarding). Local bypassing allows a load to pick its value straight out
of the store buffer, as opposed to allowing the store to post globally, and then
reading the global store. Consider the operational-style specification of a mem-
ory model, such as the one illustrated in Figure 1(b) (the details of this figure are
not important for our illustration). Consider one such model M1, and make an
identical copy calling it M2. Let the external events of M1 and M2 (its alphabet)
be load and store. Certainly we expect M2 to refine M1. However, both M2 and
M1 can have different executions starting off with a common prefix, signifying
non-determinism. For instance, if P1 runs program store(a, 1); load(a), and P2

2 http://www.emulab.net

runs program load(a), one execution of M1 obtained by annotating loads with
the returned values is
Exec1 = P1 : store(a, 1); P1 : load(a, 1); P2 : load(a, 1)
while an execution of the M2 is
Exec2 = P1 : store(a, 1); P1 : load(a, 1); P2 : load(a,>),
where > is the initial value of a memory location. Note that Exec2 exercises
the bypass option while Exec1 didn’t do so. However such bypass events are
invisible in high-level operational models that employ only the external loads
and stores. Therefore, in the above example, even though the load values dis-
agreed, we cannot throw an error, but must backtrack and search another in-
ternal execution path. However, by enriching the alphabet of our example to
Σ
′

= {storep1(a, 1), storeg(a, 1), load(a, 1), load(a,>}, where storep1 refers to
the store being visible to P1 and storeg refers to the store being visible globally
(these being internal events), Exec1 and Exec2 can be elaborated into Exec1’
and Exec2’, and these executions do not disagree on load after a common prefix:
Exec1’ = P1 : storep1(a, 1); P1 : load(a, 1); storeg(a, 1); P2 : load(a, 1),
Exec2’ = P1 : storep1(a, 1); P1 : load(a, 1); P2 : load(a,>); storeg(a, 1).
In general, there are many sources to non-determinism than just local bypassing,
and all of them must be determinized, essentially resulting in a situation where
each load is associated with a unique past store event. In Section 6, we sketch
how this approach can be applied to a wide range of weak memory models.
In Section 2, we illustrate the visibility order approach on the Alpha memory
model. The use of internal events in writing specifications is, fortunately, already
accepted in practice (e.g., [2, 3, 11]). Most approaches in this area specify the so
called visibility order of executions in terms of the enriched alphabet.
Creating Imp, Impabs, and the Spec models: In our approach, verification
is divided into two distinct phases. First, an intermediate abstraction Impabs

which highly simplifies the implementation Imp is created, and Imp is verified
against it through model-checking. Next, Impabs is verified against Spec, the
visibility-order based specification of the memory model. We believe (as we will
demonstrate) that Phase 1 can in itself be used as a very effective bug-hunting
tool. Phase 2 can be conducted using theorem-proving, similar to [12], as de-
tailed on our webpage. This paper is mostly about Phase 1. For a large class
of implementations, Phase 2 does not vary, as the same Impabs results from all
these implementations, thus permitting verification reuse. In fact, most Impabs

models we end up creating are the same as operational style models, such as
the UltraSparc operational model of [13] or the Itanium operational model [4].
We also expect the designer who creates Imp to be annotating it with internal
events. However, since such annotations are designer assertions as to when (they
think) the internal events are happening, it should be something a designer who
has studied the visibility order Spec must be able to do.

The creation of Impabs is based on the following observation. Most proto-
col implementations possess two distinct partitions: a small internal partition
containing the load and store buffers, and a much larger external partition. con-
taining the cache, main memory, and the (multiple) buses and directories (see

Section 3 for an illustration). For a wide spectrum of memory models, Impabs is
obtained by retaining the internal partition and replacing the external partition
by a highly simplified operational structure which, in most cases, is a single-port
memory (see Section 4 for an illustration). This approach also enables consis-
tent annotation of the internal and external partitions of Imp and Impabs with
events from the enriched alphabet. Another significant advantage is that we can
share the internal partition during model-checking, explained as follows.
Why sharing the internal partition is possible: A specification state is a
pair 〈spec int part, spec ext part〉 and an implementation state is a pair
〈imp int part, imp ext part〉. Typically, all the ‘int part’s and ‘ext part’s are
bit-vectors of hundreds of bits. Let 〈ii, ie〉 be an implementation state and let
〈si, se〉 be the corresponding specification state (starting with the respective
initial states). The state vector maintained during reachability is 〈ii, ie, si, se〉.
We then select an eligible external event e from the enriched external alpha-
bet and perform it on the implementation, advancing the verification state to
〈i′i, i

′
e, si, se〉. This state is not stored. If the same event e cannot be performed on

the specification, an error-trace is generated; else, it is performed and the state
is advanced to 〈i′i, i

′
e, s

′
i, s

′
e〉. Since we can retain the same internal partition, i

′
i

and s
′
i are always the same - and so we can share their bits, reducing the state

vector to 〈i′i, i
′
e, s

′
e〉. To sum up, since we do not multiply out states, the number

of states generated during reachability is the same as the number of reachable
states in the implementation model, and the state-vector size grows only by se.
Handling Protocols where the Temporal and Logical Orders differ: In
many aggressive protocols, the logical order of events (the “explanation”) is dif-
ferent from the temporal order in which the protocol performs these events. Con-
sider an optimization described by Scheurich in the context of an invalidation-
based directory protocol. In the unoptimized version, a store request sent to the
directory causes invalidations to be sent to each read-shared copy. The store can
proceed only after the invalidations have been performed. Under the optimiza-
tion, read-sharers merely queue the invalidations, sending “fake” acknowledge-
ments back to the directory, and perform the invalidations only later. Thus, even
after a processor P1 writes new data to the line, a ld from some other processor
P2 to the same cache line can read stale data. Thus, in the logical order, the
new stores must be situated after the loads, even though in temporal order, the
store is done before the loads on the stale lines. Such issues are not addressed
in most prior work. The creation of the intermediate abstraction Impabs helps
us partition our concerns [14]. Details appear on our webpage.
Handling protocols with large state-spaces: Shared memory consistency
protocols can easily have several billions of states, with global dependencies
caused by pointers and directory entries that defy compact representation us-
ing BDDs. We find the use of a parallel model-checker almost essential to make
things practical. In some cases, we aborted runs that took more than 55 hours
(due to thrashing) on sequential model-checkers on machines with 1GB memory,
when they finished in less than a few hours on our parallel model-checker.
Summary of Results: We applied our method to an implementation of the

Alpha processor [15] that was modeled after a multiprocessor using the Com-
paq (DEC) Alpha 21264 microprocessor. The cache coherence protocol is a
Gigaplane-like split transaction bus [16] protocol. We also verify an Alpha im-
plementation with an underlying cache coherence protocol using multiple inter-
leaved buses, modeled after the Sun UltraTM EnterpriseTM 10000 [17]. Both
these implementations were verified with and without Scheurich’s optimization.
These four Alpha processor protocols finished in anywhere between 54 to 240
minutes on 16 processors, visiting up to 250 million states. The diameter of the
reachability graph (indicating the highest degree of attainable parallelism if one
cuts the graph along its diameter and distributes it) was in excess of 5,000.
The highest numbers reported in [18] using their original Parallel Murϕ on the
Stanford FLASH as well as the SCI protocols were around 1 million states and
a diameter of 50. While designer insight is required in selecting the external
partition, the effort is not case specific, but instead class specific. As shown in
Section 6, we can taxonomize memory models into four categories, and once and
for all develop external partitions for each branch of the taxonomy. Designer in-
sight is required in attaching events to the abstract model. The “final property”
verified in our approach is quite simple: to reiterate, it is that the loads complet-
ing in the implementation and specification models return the same data. We
therefore think that our method has the right ingredients for being scaled up
towards considerably more aggressive protocols - including directory protocols.
Related Work: See [1] for a survey and [5] for a recent workshop. We showed
how to port Collier’s architectural testing work [19] to model-checking [10] and
extend Collier’s work to weak memory models [20]. In [21], event sequences gen-
erated by protocol implementations are verified by a much simpler trustworthy
protocol processor. In [22, 23], shared memory consistency models are described
in an operational style. In [6], sequential consistency verification, including pa-
rameterized model-checking is addressed. To our knowledge, we are the first to
verify eight different protocols against two different weak memory models using
a uniform approach. While we model “only” two processors, memory locations,
as well as data values, we end-up getting trillions of transitions. We believe that
before we can attempt parameterized verification, we must conquer the com-
plexity of these “small” instance verifications. Weak memory models for Java
are also under active study [24, 25].

2 Alpha memory model specification

A concurrent shared memory Alpha program is viewed as a set of sequences
of instructions, one sequence per processor. Each sequence captures program
order at that processor. An execution obtained by running the shared memory
program is similar to the program itself, except that each load(a) now becomes
load(a,return value). Every instruction in an execution can be decomposed into
one or two3events (local and global in the latter case; in the former case, we
shall use the words ‘instruction’ and ‘event’ synonymously). Each event t is
3 In general, as discussed later, there could be more events.

defined as a tuple (p, l, o, a, d) where p(t) is the processor in whose program
t originates from, l(t) is the label of instruction t in p’s program, o(t) is the
event type (load/store/etc.), a(t) is the memory address, and d(t) the data.
All instructions except st are decomposed into exactly one event. Each st is
decomposed into a stlocal and a stglobal. An execution obeys Alpha memory model
if all the memory events of the execution form at least one total order which
obeys the Per Processor Order stipulated by the memory model, and the Read
Value Rule stipulated by the memory model. In addition, the stglobal events must
form a total order. (Note that this total order may not respect program order
of st instructions.) The Read Value Rule specifies the data value to be returned
by the load events in an execution. The Per Processor Order respects both
program order as well as data dependence. The fact that stglobal operations form
a single total order is modeled by generating only ‘one copy’ of a stglobal event
corresponding to each st instruction, and situating the stglobal events in the total
order ‘→’. Since Alpha allows local bypassing, we split any store instruction t
into two events tlocal and tglobal (and also create the corresponding tuples) where
o(tlocal)=stlocal and o(tglobal)=stglobal. More specifically, an execution satisfies
the Alpha memory model if there exists a logical total order ‘→’ of all the ld,
stlocal and stglobal events and memory fence events present in the execution, such
that ‘→’ satisfies the following clauses:

1. Per Processor Order: Let t1 and t2 be two events s.t p(t1) = p(t2), l(t1) <
l(t2) (t1 appears earlier in program order than t2).
(a) If a(t1) = a(t2) and,

i. o(t1) = stlocal, o(t2) = ld, or
ii. o(t1) = ld, o(t2) = stlocal, or
iii. o(t1) = stlocal, o(t2) = stlocal,
iv. o(t1) = ld, o(t2) = ld, or
v. o(t1) = stglobal, o(t2) = stglobal

then t1 → t2.
(b) If there exists a fence(MB) instruction tf s.t. l(t1) < l(tf) < l(t2) then

t1 → t2.
2. Read Value: This definition follows the style in which Read Value is defined

in [15] for TSO. Formally, let t1 be a load (ld) event. Then the data value of
t1 is the data value of the most recent local event, if present; if not, it is the
most recent global store event (in the total order relation →) to the same
memory location as t1. i.e.,
(a) if

i. p(t1) = p(t2), a(t1) = a(t2), tlocal
2 → t1 → tglobal

2 and
ii. there does not exist a st instruction t3 s.t p(t1) = p(t3), a(t1) = a(t3)

and tlocal
2 → tlocal

3 → t1.
then d(t1) = d(tlocal

2);
(b) else if

i. a(t1) = a(t2) , tglobal
2 → t1 and

ii. there does not exist a st instruction t3 s.t a(t1) = a(t3) and tglobal
2 →

tglobal
3 → t1.

then d(t1) = d(tglobal
2);

(c) else, d(t1) is the “initial memory value” (taken to be > in our paper).

3 Alpha implementation model

proc proc

Main Memory or Memory Modules

Cache Coherent Protocol, Bus or Network,

C C

External

S
B

ld ldst st

S
B

Internal Internal

R
B

R
B

(a)

procproc Internal Internal

R
B

st st

S
B

S
B

External

R
B

ld ld

M

(b)

Fig. 1. (a) The Alpha Implementation model, and (b) The Alpha Intermediate ab-
straction

In the Alpha implementation of each processor is separated from its cache
(situated in the external partition) with a coalescing re-order store buffer SB
and a re-order read buffer RB (situated in the internal partition). Caches are
kept coherent with a write-invalidate coherence protocol [11]. The data structure
of caches is a two dimensional array C where, for event t, C[p(t)][a(t)].a refers
to data value of address a(t) at processor p(t), and C[p(t)][a(t)].st refers to its
address state (A-state)4. We begin with a brief explanation of our memory con-
sistency protocol. This protocol is the same as the one used in [16] to describe a
Gigaplane-like split-transaction bus. Memory blocks may be cached Invalid(I),
Shared(S), or Exclusive(E). The A-state (address state) records how the block is
cached and is used for responding to subsequent bus transactions. The protocol
seeks to maintain the expected invariants (e.g, a block is Exclusive in at most
one cache) and provides the usual coherent transactions: Get-Shared (GETS),
Get-Exclusive (GETX), Upgrade (UPG, for upgrading the block from Shared
to Exclusive) and Writeback (WB). As with the Gigaplane, coherence transac-
tions immediately change the A-state, regardless of when the data arrives. If
a processor issues a GETX transaction and then sees a GETS transaction for
the same block by another processor, the processor’s A-state for the block will
go from Invalid to Exclusive to Shared, regardless of when it obtains the data.
The processor issues all instructions in program order. Below, we specify exactly
4 We overload the selectors “.a” and “.st” for notational brevity.

what happens when the processor issues one of these instructions.
1. st: A st instruction first gets issued to coalescing re-order buffer SB, com-

pleting the stlocal event. Entries in SB are the size of cache lines. Stores to the
same cache line are coalesced in the same entry and if two stores write to the
same word, the corresponding entry will hold the value written by the store that
was issued later. Entries are eventually deleted (flushed) from SB to the cache,
although not necessarily in the order in which they were issued to the write
buffer. Before deleting, the processor first makes sure there is no earlier issued
ld instruction to the same address pending in RB (if any, those RB instructions
must be completed before deleting that entry from SB). It then checks if the
corresponding block’s A-state is Exclusive(E). If not, the coherence protocol is
invoked to change the A-state to E. Once in E state, the entry is deleted from
SB and written into the cache atomically, thus completing the stglobal event.
2. ld: To issue a ld instruction, the processor first checks in its SB for a st in-

struction to the same word. If there is one, the ld gets its value from it. If there
is no such word, the processor buffers the ld in RB. In future, when an address
is in E or S state, all ld entries to that same address in RB gets its data from
cache and are then deleted from the buffer. ld entries to different words in RB
can be deleted in any relative order. There is no overlap between the issuing of
lds and the flushing of sts to the same address once E state is obtained.
3. MB: Upon issuing a MB instruction, all entries in SB are flushed to the

cache and all entries in RB are deleted after returning their values from cache,
hence completing the corresponding MB event5. While flushing an entry from
SB, the processor checks that there is no earlier issued ld instruction to the
same address residing in RB. We call this entire process as flushimp.

4 The Intermediate Abstraction

The Alpha abstract model retains the internal data partition of the implemen-
tation without any changes. However, the cache, the cache coherent protocol,
bus and main memory in the implementation which belong to the external par-
tition are all replaced by a single port main memory M in the abstract model.
This replacement follows the rules of the thumb we have presented in Section 6
for dealing with memory models obeying write atomicity (as is the case with
the Alpha model). We now take a look at how each of the instructions get im-
plemented. As with the implementation, the processor issues all instructions in
program order.
1. st: A st instruction first gets issued to SB just as in the implementation,

completing the stlocal event. At any time, an entry anywhere in SB can be
deleted from the buffer and written to the single port memory M atomically,
provided there is no earlier issued ld instruction to that address pending in RB.
This completes the stglobal event.
2. ld: Similarly, as in implementation, a ld instruction tries to hit SB and on

5 Appropriate cache entries need to be in E state before flushing

a miss, it gets buffered in RB. However, any entry in RB can be deleted once
it receives its data from M , both the steps being performed in one atomic step.
Entries to same address get their data values from M at the same time.
3. MB: Upon issuing a MB instruction, all entries in SB are flushed to M and

all entries in RB are deleted after returning their values from M . While flushing
from SB the processor checks that there is no earlier issued load event to the
same address residing in RB. We call this entire process as flushabstract.

5 Model-checking based Refinement

The events stlocal, stglobal, ld and MB have been defined for both the implemen-
tation and the abstract model. Every event of the implementation is composed

Event Implementation Operational Model
ld(t)

(SBp(t)hit) read from SBp(t) read from SBp(t)

ld(t)

(SBp(t)miss)

Issue to RBp(t);

C[p(t)][a(t)].st=S or E

and
d(t) ← C[p(t)][a(t)].a

Issue to RBp(t);

d(t) ← M [a(t)]

stlocal(t) Issue(SBp(t), t) Issue(SBp(t), t)

stglobal(t)

C[p(t)][a(t)].st=E

and
C[p(t)][a(t)].a ← d(t) M [a(t)] ← d(t)

MB(t) flushimp flushabstract

Table 1. Completion steps of all events of implementation and abstract model

of multiple steps. However, in the abstract model each event except ld is com-
posed of a single atomic step. For example, for a stglobal event to complete, if the
concerned address’s A-state is Invalid, the processor will need to send a request
on the bus to get an Exclusive copy. During this process many intermediate
steps take place which include other processors and main memory reacting to
the request. However, if a miss occurs while handling the stglobal event in the
abstract model, the entry in SB can be deleted and atomically written to single
port memory.
Synchronization scheme: The discovery of the synchronization sequences
between the implementation and the specification is the crux of our verification
method. Table 1 provides an overview of the overall synchronization scheme.
This table compares the completion steps of both the implementation and the
abstract model, and highlights all synchronization points. Let us briefly elabo-
rate the actions taken for ld entry in RB to complete. In the implementation,
5 Here d(t) ← C[p(t)].[a(t)].a refers to the load instruction t receiving its data from

the updated cache entry

Itanium DASH-RC

Memroy Consistency Models

PC PowerPC SC IBM-370 TSO PSO RMO Alpha

Strong Weak Weakest Hybrid

Memory
Model

Splitting of
store instructions

External
Partition

Strong store unsplit
single port
memory

Weak
store split to
local and global

single port
memory

Weakest

store split to local

and (p + 1)6globals
memory and re-order
buffer per processor

Hybrid

store split to

local and (p + 1) globals
memory and re-order
buffer per processor

Fig. 2. (a) Memory model classes, and (b) Splitting of store and external partition for
each class

coherence actions are first invoked to promote the cache line into an Exclusive
or Shared state. Thereafter, the implementation receives data from the bus and
at this point completes the ld event. At this point, the model-checker will imme-
diately make the same event complete in the abstract model by simply returning
the data from M [a(t)] through the multiplexor switch. Synchronization happens
if the same datum is returned. In general, the last step that completes any event
in the implementation and the single step that completes the same event in the
abstract model are performed atomically.

The synchronization scheme for instructions that may get buffered and get
completed later are slightly more elaborate. Basically, synchronization must be
performed both when the instruction is entered into the buffer and later when
they complete. For example, since a ld instruction may miss the SB and hence

Alpha Implementation Itanium Implementation

Cache Coherent
Protocol

States
(×106)

Transitions
(×106)

Time
(hrs)

States
(×106) Transitions (×106)

Time
(hrs)

Split Trans. Bus 64.16 470.52 0.95 111.59 985.43 1.75
Split Trans. Bus with
Scheurich’s Opt. 251.92 1794.96 3.42 325.66 2769.77 4.80

Multiple Interleaved Buses 255.93 1820.38 3.65 773.27 2686.89 10.97
Multiple Interleaved Buses
with Scheurich’s Opt. 278.02 1946.67 3.90 927.31 3402.41 12.07

Table 2. Experimental Results

may not complete immediately, we will have to synchronize both the models
when ld gets buffered, and finally synchronize again when the ld event com-
pletes. The synchronization of MB is accomplished indirectly, by the already
existing synchronizations between the models at ld or stglobal. This is because
an MB completes when the above instructions occurring before it complete. Our
experimental results are summarized in Table 2.

6 Creation of intermediate abstractions, Impabs

In our verification methodology, the abstract model always retains, without
change, the internal partition of the implementation. However, the external par-
tition is considerably simplified. Designer insight is required in the selection of a
simplified external partition, as this depends on the memory model under exam-
ination. In this section we categorize memory models into four classes and show
how a common external partition can be derived for memory models belonging
to a particular memory model class, thus providing a systematic approach to
deriving the abstract model. The four classes of memory models are as follows:
Strong: requires Write atomicity and does not allow local bypassing. (e.g. Se-

quential Consistency,IBM-370).
Weak: requires Write atomicity and allows local bypassing (e.g. Ultra Sparc

TSO,PSO and RMO,Alpha)
Weakest: : does not require Write atomicity and allows local bypassing (e.g.

PowerPC,PC).
Hybrid: : supports weak load and store instructions that come under memory

model Weakest and also support strong load and store instructions that come
under Strong or Weak memory model classes (e.g. Itanium, DASH-RC).

Depending upon the category a memory model falls under, we split a store
instruction into one or more events. Load instructions for any memory model can
always be treated as a single event. Here are a few examples of splitting events.
In case of Sequential Consistency, we do not split even the stores as sequential
consistency demands a single global total order of the loads and stores. For a
weak memory model such as the Ultra Sparc TSO, we split the store instruction
into two events, a local store event (which means that the store is only visible
to the processor who issued it) and a global event (which means that the store
event is visible to all processors). Since the Weakest7category of memory models
lack write atomicity, we need to split stores into p+1 events, where p is number
of processors, thus ending up with a local store event and p global events (global
event i would mean that the store event is visible to processor i). Figure 2(b)
summarizes these splitting decisions for various memory models. It also shows
the nature of the external partition chosen for various memory models.

6 p is number of processors
7 Note that the abstract models for weakest memory models can also be used as

abstract models for strong models. For example, the Lazy Caching protocol of Gerth
[9] can be used as an abstract model for sequential consistency.

In case of Strong and Weak memory models, the external partition is just a
single port memory M . The intuition behind having M is that both these classes
of memory models require Write Atomicity and hence a store instruction should
be visible to all processors instantaneously. Weakest and Hybrid memory models
require more involved data structures where each processor i has its own memory
Mi and also a re-ordering buffer that takes in incoming store instructions posted
by different processors including itself from their SB. Store instructions residing
in this buffer eventually get flushed to memory. The combination of Mi and
a re-ordering buffer simulates a processor seeing store instructions at different
times and different relative order as that of another processor. An algorithm that
generates the correct external partition given a memory model has been designed.
A remotely executable web-based tool is also available for experimenting with
the operational models thus generated.

7 Conclusions

In this paper, we presented a uniform verification methodology that applies
across a spectrum of architectural memory consistency models and handles a
variety of consistency protocols. We report experiments involving eight different
protocols and two different weak memory models. Our approach fits today’s
design flow where aggressive, performance oriented protocols are first designed
by expert designers, and handed over to verification engineers. The verification
engineer can follow a systematic method for deriving an abstract reference model.
Our approach does not require special training to use, and can benefit from
the use of multiple high-performance PCs to conduct parallel/distributed model
checking, thereby covering large state spaces. In ongoing work, we are verifying
directory based implementations for the Alpha and Itanium memory models. We
are also working on several optimizations to speed-up model checking as well as
exploring alternatives to model-checking.

References

1. Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29(12):66–76, December 1996.

2. http://research.microsoft.com/users/lamport/tla/wildfire-challenge.html.

3. Gil Neiger, 2001. http://www.cs.utah.edu/mpv/papers/neiger/fmcad2001.pdf.

4. Prosenjit Chatterjee and Ganesh Gopalakrishnan. Towards a formal model of
shared memory consistency for intel itanium. In ICCD, pages 515–518, 2001.

5. Mpv: Workshop on specification and verification of shared memory systems, 2001.
http://www.cs.utah.edu/mpv/.

6. Thomas Henzinger, Shaz Qadeer, and Sriram Rajamani. Verifying sequential con-
sistency on shared-memory multiprocessor systems. In CAV, LNCS 1633, pages
301–315, 1999.

7. Shaz Qadeer. Verifying sequential consistency on shared-memory multiprocessors
by model checking. Technical report, SRC, December 2001. Research Report 176.

8. Anne Condon and Alan J. Hu. Automatable verification of sequential consistency.
In Symposium on Parallel Algorithms and Architectures (SPAA), July 2001.

9. Michael Merritt. Guest editorial: Special issue on shared memory systems. Dis-
tributed Computing, 12(12):55–56, 1999.

10. Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, and Ganesh Gopalakrish-
nan. The ‘test model-checking’ approach to the verification of formal memory
models of multiprocessors. In CAV, LNCS 1427, pages 464–476, 1998.

11. D. Sorin et.al. Specifying and verifying a broadcast and a multicast snooping
cache coherence protocol. Technical Report #1412, CS Department, U. Wisconsin,
Madison, March 2000.

12. Seungjoon Park. Computer Assisted Analysis of Multiprocessor Memory Systems.
PhD thesis, Stanford University, jun 1996. Department of Computer Science.

13. David L. Weaver and Tom Germond. The SPARC Architecture Manual – Version
9. P T R Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1994.

14. Prosenjit Chatterjee. Formal specification and verification of memory consistency
models of shared memory multiprocessors. Master’s thesis, Univ Utah, School of
Computing, 2002.

15. Anne Condon, Mark Hill, Manoj Plakal, and David Sorin. Using lamport clocks to
reason about relaxed memory models. In Proceedings of HPCA-5, January 1999.

16. A.Singhal et.al. Gigaplane: A high performance bus for large smps. In Proc.
4th Annual Symp on High Performance Interconnects, Stanford University, pages
41–52, 1996.

17. The Ultra Enterprise 10000 Server,
http://www.sun.com/servers/highend/10000/

18. Ulrich Stern and David Dill. Parallelizing the Murφ verifier. Formal Methods in
System Design, 18(2):117–129, 2001. (Journal version of their CAV 1997 paper).

19. W. W. Collier. Reasoning About Parallel Architectures. Prentice-Hall, Englewood
Cliffs, NJ, 1992.

20. Rajnish Ghughal and Ganesh Gopalakrishnann. Verification methods for weaker
shared memory consistency models. In José Rolim et al. (Eds.), editor, Proc.
FMPPTA, pages 985–992, May 2000. LNCS 1800.

21. Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Dynamic verification of
cache coherence protocol. In ?, June 2001. Workshop on Memory Performance
Issues, in conjunction with ISCA.

22. David L. Dill, Seungjoon Park, and Andreas Nowatzyk. Formal specification of
abstract memory models. In Gaetano Borriello and Carl Ebeling, editors, Research
on Integrated Systems, pages 38–52. MIT Press, 1993.

23. P. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy caching in TLA. Distributed
Computing, 1997.

24. Jeremy Manson and William Pugh. Core semantics of multithreaded Java. In
ACM Java Grande Conference, June 2001.

25. Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Formalizing the java
memory model for multithreaded program correctness and optimization. Technical
Report UUCS-02-011, University of Utah, School of Computing, 2002. Also at
http://www.cs.utah.edu/~yyang/research.

