
GEM: Graphical Explorer of MPI Programs
Alan Humphrey,

Christopher Derrick,
and Ganesh Gopalakrishnan

School of Computing
University of Utah

Salt Lake City, UT 84112
Email: {ahumphre,cderrick,ganesh}@cs.utah.edu

Beth Tibbitts
IBM Corporation

Eclipse Parallel Tools Platform
Lexington, KY 40511

Email: tibbitts@us.ibm.com

Abstract—Formal dynamic verification can complement MPI
program testing by detecting hard-to-find concurrency bugs. In
previous work, we described our dynamic verifier called In-situ
Partial Order (ISP) that can parsimoniously search the execution
space of an MPI program while detecting important classes of
bugs. One major limitation of ISP, when used by itself, is the
lack of a powerful and widely usable graphical front-end. We
now present a new tool called Graphical Explorer of MPI Pro-
grams (GEM) that overcomes this limitation. GEM is a plug-in
architecture that greatly enhances the usability of ISP, and serves
to bring ISP within reach of a wide array of programmers with its
original release as part of the Eclipse Foundation’s Parallel Tools
Platform (PTP) Version 3.0 in December, 2009. GEM is now a
part of the PTP End-User Runtime. This paper describes GEM’s
features, its architecture, and usage experience summary of the
ISP/GEM combination. Recently, we applied this combination on
a widely used parallel hypergraph partitioner. Even with modest
amounts of computational resources, the ISP/GEM combination
finished quickly and intuitively displayed a previously unknown
resource leak in this code-base. Here, we also describe the process
and benefits of using GEM throughout the development cycle of
our own test case, an MPI implementation of the A* search. We
conclude with a summary of our future plans.

Keywords-Dynamic Verification, Graphical User Interfaces,
Dynamic Interleaving Reduction, Message Passing, MPI, Multi-
core, Eclipse Parallel Tools Platform.

I. INTRODUCTION

Over the past two decades, high performance computing
(HPC) has evolved from the domain of the expert programmer
to become an everyday approach used by engineers and
researchers. A majority of these parallel programs employ
the message passing interface (MPI [1]) library for inter-
process communications and for invoking collective operations
such as barriers and reductions. MPI continues to enjoy a
dominant position in HPC, and has been ported to run on
virtually every parallel machine available today. Given the
extensive presence of MPI, it is imperative that highly effective
debugging tools be created for MPI programs. Today, there
are an impressive array of tools available for debugging MPI
programs. These tools tend to provide extensive facilities for

Supported in part by Microsoft, NSF CNS-0509379, CCF-0811429, CCF-
0903408. Portions of this material are supported by or based upon work
supported by the Defense Advanced Research Projects Agency (DARPA)
under its Agreement No. HR0011-07-9-0002, the United States Department
of Energy under Contract No. DE-FG02-06ER25752.

stepping through process executions and graphically visualiz-
ing executions. Unfortunately, these tools only provide ad hoc
techniques for process interleaving (schedule) generation, and
as a result, many interleavings are not considered. In practice,
these omitted interleavings are known to harbor bugs [2].
Considering all interleavings is not an option because there
are an astronomical number of them (e.g., over 10 billion
for a five-process MPI program where each process performs
merely five MPI calls).

It is essential that a practical formal verification tool for MPI
programs directly accept user source codes, and not rely upon
hand-built models of the code, as needed by all other formal
tools (e.g., [3]). Obtaining such models is next to impossible
in practice, considering the difficulty of modeling the C/MPI
semantics and the rapidity with which programs are changed
during optimization cycles.

Our tool ISP [4, 5, 6] (summarized in § I-A) that incorpo-
rates the algorithms first introduced in [7, 8] is currently the
only tool that can analyze large MPI programs while avoid-
ing redundant interleavings and requiring no model building.
While ISP was a significant step forward in the arena of
dynamic verification tools for MPI, its usage was hindered
by the absence of a widely usable and intuitive graphical user
interface. This paper describes our contribution in this regard
through a new tool called Graphical Explorer of MPI Programs
(GEM). GEM is designed to serve as an Eclipse plug-in along-
side the Parallel Tools Platform (PTP [9]), a rapidly evolving
tool integration framework for parallel program development
and analysis. GEM was initially released with PTP Version
3.0, and is now a part of the PTP End-User Runtime, included
in successive PTP releases. The upcoming 4.0 version of PTP,
scheduled to be released in June, 2010, will coincide with the
release of Eclipse Helios.

GEM was initially created to provide a graphical interface
for ISP via an integration within Eclipse, similar to the
integration of ISP within Visual Studio [10]. This previous
integration was not sufficient because Visual Studio runs on the
proprietary Windows platforms, whereas the HPC community
often prefers working with non-commercial open-source soft-
ware; these are significant advantages GEM and PTP provide.
GEM also offers many more features than our work in [10].
Given the growing use of PTP all over the world, we believe

that ISP and GEM will help bring dynamic formal verification
for MPI to every developer.

The rest of this section presents sufficient research back-
ground to appreciate our contributions. § II describes GEM in
detail. § III provides details of how GEM handles a real-world
verification task. § IV summarizes usage of GEM throughout
the development cycle of our own MPI C application. § V
describes our conclusions and our future plans.

A. Background on ISP

Fig. 1. Overview of ISP

There are many excellent MPI program debuggers, for
instance TotalView [11], Umpire [12], Marmot [13], and
Jitterbug [14]. Two unique features set ISP apart from all these
tools: the ability to determine relevant interleavings (possible
schedules with runtime behavior different from those already
observed), and the ability to enforce interleavings. For an
illustration of these concepts, consider the example in Figure 2
(for brevity, we do not show the Wait calls associated with the
non-blocking Isend and Irecv calls). Considering the overall
magnitude of the verification problem, we believe that a verifi-
cation tool must not spend effort varying the order in which the
constituent Barrier calls of a matching set of MPI barriers are
issued to the MPI runtime. Likewise, unless the MPI library
itself is in error, there is nothing much to be gained by posting
deterministic sends and receives in different orders (there are
millions of such calls issued in an MPI program). As far as
we know, none of the alternative tools exploit these options.
ISP’s focus is away from such permutations of deterministic
matches, and toward discovering the maximal degree of non-
determinism (i.e., discovering relevant interleavings).

For further illustration of these ideas, consider Figure 2
again. As shown, matching P2’s Isend with P1’s Irecv leads
to a bug; but can this match occur? The answer is yes: first,
let P0’s Isend and P1’s Irecv be issued; then the execution
is allowed to cross the Barrier calls; after that, P2’s Isend
can be issued. At this point, the MPI runtime faces a non-
deterministic choice of matching either Isend. Notice that this
particular execution sequence can be obtained only if the
Barrier calls are allowed to match before the Irecv matches.
Existing MPI testing tools cannot exert such fine control
over MPI executions. Thanks to the theory of matches before
that we introduced in [4], ISP can exert this fine degree of
execution control. ordering rule

P0 P1 P2

Isend (to : 1, 22); Irecv (f rom : ∗, x) Barrier;
Barrier; Barrier; Isend (to : 1, 33);

i f (x == 33) bug;
Fig. 2. MPI Example

In more detail, by interposing a scheduler (Figure 1), ISP
is able to safely reorder, at runtime, MPI calls issued by the
program. In our present example, ISP’s scheduler (i) intercepts
all MPI calls coming to it in program order, (ii) dynamically
reorders the calls going into the MPI runtime (ISP’s scheduler
sends Barriers first; this is correct according to the MPI se-
mantics), and (iii) at that point discovers the non-determinism.

Once ISP determines that two matches must be considered,
it re-executes (replays from the beginning) the program in
Figure 2 twice over: once where P0’s Isend is considered,
and the second time where P2’s Isend is considered. But
in order to ensure that these matches do occur, ISP must
dynamically rewrite Irecv(f rom : ∗) into Irecv(f rom : 0)
and Irecv(f rom : 2) in these replays. If we did not so
determinize the Irecvs, but instead issued Irecv(f rom : ∗)
into the MPI runtime, such a call may match Isend from
another process, say P3. In summary, (i) ISP discovers the
maximal extent of non-determinism through dynamic MPI
call reordering, (ii) it achieves scheduling control of relevant
interleavings by dynamic instruction rewriting. While pursuing
relevant interleavings, ISP detects the following error condi-
tions: (i) deadlocks, (ii) resource leaks (e.g., MPI object leaks),
and (iii) violations of C assertions placed in the code. ISP
re-runs the code through all the relevant interleavings. For
the given MPI program operating under the given input data
set, ISP guarantees to find all deadlocks, resource leaks, and
violations of local assertions (e.g., C assert calls placed in
the code).

It is important to emphasize that while the internal issue
order computed by ISP appears to be an extremely skewed
schedule, it can actually occur on an MPI platform. Even
though ISP executes the given MPI program on a specific
machine using a specific MPI library, it forces this skewed
schedule to occur by delaying non-deterministic non-blocking
operations. For example, by delaying Irecv, ISP is able to
discover the match with respect to the Isend of P2. The
possibility of considering P0’s Isend is not lost by so delaying.
In this way, ISP can verify a program for portability even
though it is running the program on a specific platform where
the natural schedule would perhaps always prefer P0’s Isend.
ISP’s ability to maximize the latent non-determinism at run
time and then verifying over all the possibilities gives it the
ability to issue verification guarantees.

II. HIGHLIGHTS OF GEM

We begin with a description of what GEM offers followed
by some of its design philosophies. GEM offers support
for both Eclipse C/C++ Development Tools (CDT) Managed
Build and Makefile projects, and is designed to accommodate

MPI programmers with different levels of training. As one
example, even though ISP internally carries out dynamic
reordering and instruction rewriting, GEM has the ability
to present verification results as if the matches happened
according to program order. This is ideally suited for new
MPI programmers who will find it easy to follow the flow
of the calls as they walk through their code. Most expert
MPI programmers however, wish to see what a tool does
internally (to debug inexplicable behaviors). We therefore
also provide the ability to view instructions in the internal
execution order. (Figure 4) clearly shows this ability. To make
the Eclipse integration as seamless and effective as possible
GEM also strongly adheres to the design conventions set
forth by the Eclipse foundation, making it easily maintainable
and extensible. GEM, combined with the plethora of parallel
development tools PTP offers (e.g., scalable, parallel debugger
and MPI job launch facilities), a developer can write, debug,
formally verify and launch their MPI code on a cluster all from
within the Eclipse IDE. More detail on PTP can be found at
[9, 15].

Finally, we provide an extensive help contribution with
GEM. We now describe the external view of GEM (§ II-A)
and its internal architecture (§ II-B).

A. GEM: External View

Basic Operation: Given a collection of files to analyze using
ISP, GEM helps compile and link the files against the ISP
profiler library (the interposition layer), and then invokes ISP’s
scheduler on the executable which creates a log file containing
post-verification results. GEM then parses the log file and
organizes its contents into efficient internal data structures.
It then attempts to associate MPI calls with one another (e.g.,
sends need to be associated with their corresponding receives).
Any call that fails to associate in this manner is flagged as a
deadlock. GEM includes a valuable ability to localize errors
by allowing users to step through and display the state of
processes involved in the error. When an error is flagged, the
user is notified of the problem within the GEM Analyzer View
and presented with the option to view the relevant source code
within the Eclipse editor as shown in Figure 3.

Fig. 3. Deadlock Display by GEM

As mentioned earlier, GEM also allows users to view the
execution results according to the program order or according
to ISP’s internal execution order. GEM displays MPI point to

point operations by listing the send and the receive actions in
separate windows (Figure 4).

Collective operations such as barriers and reduction op-
erations are listed showing detailed information on one of
the calls in one window and listing the remaining calls in
summary form in another window. The entire collection of
features described above and full Eclipse integration of GEM
are shown in Figure 5.

GEM Views: Each particular Eclipse development environ-
ment (e.g., C/C++, Java, Python) has its own perspective
made up of a collection of individual Eclipse views (e.g.,
source editor, console). In addition to its own dedicated textual
console view, GEM also provides the GEM Analyzer View,
which serves four functions: (i) summarize verification results,
(ii) help localize errors, (iii) allow the user to step through
matching MPI calls, and (iv) link to the happens-before viewer.

Figure 4 depicts the GEM Analyzer View obtained by
running a 10-process version of ParMETIS through GEM,
clearly showing these facts: (i) that 221,057 MPI calls were
processed, (ii) that the nineteenth transition is an MPI Send
on line 24 matching an MPI Recv on line 18, and most
interestingly (iii) that a resource leak was found.

At this point, from within the GEM Analyzer View, a user
can click on the button “Browse Leaks” to obtain a shell
window display indicating the source line containing the leak
(an allocated but unfrequented MPI object). Clicking on a
listed error takes the user to that exact line of source code
within the Eclipse editor. The GEM Analyzer View clearly
indicates whether a deadlock, assertion violation, or resource
leak was found after a verification run (Figure 5). Future
versions of ISP/GEM will also instrument C mallocs and track
their corresponding f ree operations.

Notice also the radio buttons Step Order for MPI Call
offering two options: Internal Issue Order and Program Order.
The Rank Lock feature is another option (borrowed from [10])
which shows whether the user is in the mode of stepping
through MPI calls associated with one process (rank) or
whether the stepping encompasses all processes.

Happens-Before Viewer: Happens-before is a distributed
system concept introduced by Lamport in [16] to keep track
of time in a distributed system on the basis of event causal-
ities. In MPI programs, the salient ‘happenings’ are message
matches; for this reason, we call this relation happens-before.
A formal definition of the happens-before relation for MPI
was presented for the first time in [4]. Understanding this
relation has led to the creation of the happens-before-viewer
which graphically shows how the various calls are related to
each other. The paper [5] summarized how ISP’s ‘Java GUI’
(as it was called then) presented this relation. In an effort to
provide users with as many tools as possible GEM gives users
the ability to view their current project through the happens-
before viewer by clicking the button “HB Viewer” from the
GEM Analyzer View (Figure 5).

Fig. 4. GEM Analyzer View on ParMETIS

B. GEM: Internal Details

We now describe how GEM was architected and integrated
within Eclipse. The first thing to keep in mind is that Eclipse
is not a single tool with a few small add ons, but rather a
small kernel with a collection of extension points, or places
to tie into and extend the architecture. These extension points
all differ in purpose but share a common interface.

Described succinctly, the Eclipse Plugin Development En-
vironment we used supports an extensible platform essen-
tially consisting of three layers. (i) Eclipse Platform which
offers common programming-language-neutral infrastructure;
(ii) Java Development Tools (JDT), which adds a rich, full-
featured Java IDE to the Eclipse Platform; and (iii) Plug-
In Development Environment (PDE) which extends the JDT
with plug-in development support. The Eclipse platform itself
consists of several components separated into two primary
categories: (i) Core, which is a runtime component that defines
plug-in infrastructure, and provides a workspace to manage
projects. (ii) User Interface (UI) that provides a Workbench
to define the Eclipse UI (e.g. editors, views, perspectives),
(iii) Standard Widget Toolkit (SWT) offers the graphics and a
set of widgets for UI design with layout strategies. (iv) JFace
is a UI framework built on top of SWT to help manage images
and fonts and to provide more complex viewer objects.

All Eclipse plug-ins are represented by a single instance of
a plug-in class which extends AbstractUIPlugin. In our case,

GemPlugin is the activator class for GEM, and is the source
for shared information such as preferences, icons and images
used. This class controls the life-cycle of GEM.

Basic Eclipse plug-in architecture uses a model that sepa-
rates declaration from implementation. The shape of a con-
tribution is declared with XML in a standard file(plugin.xml),
and the implementation is in Java.

The creation of GEM and its help plug-in relies upon the
following Eclipse extension points:
• Popup Menus: org.eclipse.ui.popupMenus
• Toolbar Buttons (menus): org.eclipse.ui.menus
• Commands: org.eclipse.ui.commands
• Handlers: org.eclipse.ui.handlers
• Key Bindings: org.eclipse.ui.bindings
• Views: org.eclipse.ui.views
• Preferences: org.eclipse.core.runtime.preferences
• Preference Pages: org.eclipse.ui.preferencePages
• Help: org.eclipse.help.toc
In contributing to these Eclipse extension points GEM has

adhered to all expected interfaces. Actions defined by GEM
are backed by classes implementing the IWorkBenchWin-
dowActionDelegate interface. Commands defined by GEM
are backed by classes which extend AbstractHandler. These
classes all implement the behavior of a particular action or
command defined in the XML descriptor file plugin.xml.

GEM is centered around the GEM Analyzer View, a col-
lection of MPI runtime information and tools to debug and

Fig. 5. GEM’s Seamless Eclipse Integration

examine this information. To effectively create push-button
dynamic formal verification and intuitive visual MPI runtime
analysis, we’ve made heavy use of SWT and JFace for the
UI component and rely on many cleverly crafted supporting
classes, including a dedicated console (another view con-
tributed by GEM) to accompany the GEM Analyzer View.

SWT provides a common set of widgets (buttons and
menus), and strategies for layout and grouping of widgets.
JFace provides viewer objects to display more complicated
objects, as well as a mechanism for SWT widgets to respond
to events such as selection or double clicks by registering a
listener to a particular widget. It is essentially a thin layer
on top of the underlying operating system’s native widget
set without any dependencies on Eclipse itself. All our views
were created with SWT using FormLayout and GridLayout
and Composites for grouping.

With an initial intention of donating GEM to the Eclipse
Parallel Tools Platform (PTP), we used PTP-specific icons
for our graphical resources. As GEM is now part of PTP,
both plug-ins are bundled into a feature product which allows
distribution with source code and license. All strings have
also been externalized for internationalization. Our hope in

distributing our work along with source code under the Eclipse
Public License is that the community will be able to contribute
to and extend GEM in the future.

III. VERIFYING PARMETIS USING GEM

ParMETIS 3.1 [17] is a parallel graph partitioning and
sparse matrix ordering library that finds wide use. Verifying
ParMETIS makes for an excellent study due to the inher-
ent complexities involved with verifying and analyzing the
runtime results of a project of such size. Some routines
provided by ParMETIS have more than 12,000 lines of code
between themselves and their helper functions, and involve an
enormous number of MPI calls. In past tests of ISP [7] without
GEM, the number of MPI calls recorded by the ISP scheduler
exceeded 1.3 million.

The test machine used for this particular case study using
GEM was an HP Pavilion laptop running Ubuntu 8.10, with
4GB RAM and an Intel Core2Duo T-9300 CPU running at 2.5
GHz. To get a feel for the runtime complexities and realistic
range of use for GEM, we began verifying with two processes
and gradually increased this number.

At 10 processes, we found an entire verification run to take

Fig. 6. ParMETIS Communicator Leak

approximately 10 minutes. 9.75 minutes were required for ISP
to do the verification and 15 seconds for GEM to parse the
log file, load internal data structures and display the results.
A 32 process verification of ParMETIS took 40 minutes and
generated a log file that was 512MB.

With the C/C++ makefile support offered by GEM, only
a few small modifications to the ParMETIS makefiles were
required to verify it. Once the ParMETIS project built correctly
and the ISP-profiled executable was produced, dynamic formal
verification is accessed essentially the same way it is in GEM
for any CDT Managed Build project. The only difference will
be that we access the executable from context menus via the
Eclipse Project Explorer View instead of the toolbar icon.

Thanks to ISP’s scheduling algorithm, only one schedule
was explored. All of our tests verified that the ParMETIS
code was free from deadlocks and local assertion violations.
However, our tests using GEM discovered a communicator
leak in the ParMETIS code, as discussed earlier (Figure 6).
These types of results are instantly recognizable within the
GEM Analyzer view. This particular result is further proof
of the effectiveness of graphical debugging tools for parallel
application development. With one click in the shell window
provided by GEM, the user can navigate to the source line
where the communicator was allocated.

IV. GEM IN THE DEVELOPMENT CYCLE

To test the effectiveness of GEM and its ease of use
throughout the development cycle of an MPI application, we
created a parallel implementation of the A* search algorithm in
MPI. The general idea behind our implementation is to have
one process explore the maze long enough that the number
of nodes in the priority queue is greater than or equal to
the total number of processes involved. At this point each
process receives a node and begins to work more or less
independently trying to solve the maze starting from that node.
Each process regularly informs the others what it has achieved
so as to reduce unnecessary duplication of work. When a
process realizes that it is impossible to solve the maze without
using nodes that others have already reached in less steps it
abandons its work and receives a new node from the root

process to work on. This continues until one of the nodes
successfully completes the maze at which point all processes
know how many steps the maze was solved in and continue
to work until they know they cannot solve the maze in less
steps. At this point the optimal path has been found and is
reported to the user.

Our method of development was to incrementally add more
functionality, and to test each addition by running the inte-
grated push-button dynamic formal verification GEM offers
and to graphically examine program behavior and MPI runtime
characteristics. By using GEM in this way within the Eclipse
development environment, our development and debugging
time of the A* application was significantly reduced. In
particular there were a number of deadlocks that were quickly
uncovered and fixed thanks to the aid of GEM’s intuitive
runtime analysis reports and graphical displays.

Without the aid of GEM, it takes a great deal of time to
locate the exact position of a deadlock and understand its
cause, but with GEM a user is shown exactly where to find the
deadlock without any effort on their part and with the aid of
the runtime information provided it usually only takes a few
moments to understand its cause. Here are some of the errors
GEM aided us in correcting:
• Where root was receiving the search paths found by each

process, we had copied the receive from another line
of code and forgotten to change the sender. This led to
a situation where root was trying to receive from root.
When we ran the program we got a deadlock. GEM
clearly reported which line this error occurred on.

• We altered the code and unintentionally created a sit-
uation where some of the processes never reached a
collective call. Again running the code simply resulted
in a deadlock and GEM told us that the error was a
collective call which was not reached by certain processes
and directed us to the exact line of that call. From there
we made a simple change to the logic and the problem
was fixed.

• We needed to send out assignments from the root process
to all other processes and used a for loop to do so. Out of
habit, we had the for loop start from zero. After seeing a
deadlock we ran GEM and saw that the code was trying
to send from process zero to process zero (since process
zero was the root process). Once we realized the mistake
we changed the for loop to start at one instead of zero.

Each of these errors was quickly solved thanks to features
GEM provides, without which considerable time and effort
would have been needed to track down the exact location and
cause. Additionally GEM helped us discover, with the help of
its optional irrelevant barrier detection, that one of the barriers
we had placed in the code was not actually needed and could
be removed.

As we had hoped, the powerful array of intuitive, graphical
displays and tools GEM offers, combined with its seamless
integration within Eclipse allowed convenient dynamic MPI
formal verification throughout the development cycle or our
MPI C application.

Fig. 7. Eclipse PTP Parallel Runtime Perspective

We made use of many invaluable tools available in the
Eclipse PTP as well. With an easily configured Parallel Launch
Configuration and MPICH Resource Manager, we were able
to launch the A* application on our remote cluster during
the development cycle. Figure 7 illustrates a completed 26-
process job submitted from within the PTP Parallel Runtime
Perspective. PTP also offers extensive local and remote parallel
debug services ([9, 15]).

V. CONCLUSIONS AND FUTURE PLANS

In this paper, we summarized how the usability of our
dynamic verifier for MPI programs, namely ISP, has been
vastly enhanced by the design of the Graphical Explorer of
MPI Programs (GEM). Several interactive tutorials have been
offered using the ISP/GEM combination [18, 19, 20]. The
feedback we have received suggests that GEM has helped ISP
become an intuitive productivity enhancing tool.

A number of avenues of further research are being pur-
sued. First, we are working on a number of approaches to
scale up ISP’s verification algorithms. Second, we are in
the process of adding many more default checks into ISP,
and correspondingly enhancing the error viewing facilities in
GEM. Third, we plan to instrument the salient aspects of

C/Fortran source codes that lie between MPI calls. At present,
these source codes are simply executed without any scheduler
interception, causing certain memory errors to be overlooked.
For example, if an MPI non-blocking receive is immediately
followed by a computational expression that uses the receive
buffer without an intervening MPI wait/test, there would be a
potential data race on the receive buffer. Once we instrument
these expressions and add suitable facilities for detecting such
errors, we plan to add to GEM control-flow views through
these erroneous non-MPI source codes also.

Last but not least, it is important to be able to run dynamic
verification at scale. Some bugs manifest only when a
program is run at scale (e.g., buffer overflows, array indices
falling outside of allowed bounds, etc.) Unfortunately, ISP’s
approach does not allow the required degree of scalability.
We have recently developed a scalable dynamic analysis
tool called Distributed Analyzer for MPI (DAMPI, [21])
based on new distributed algorithms. We plan to develop a
tight integration of DAMPI within GEM, including facilities
for invoking DAMPI on a remote cluster (as illustrated in
Figure 7) and displaying the verification results. Initial ideas
in this regard were recently presented at [22].

Acknowledgements: We gratefully acknowledge the
work done by the principal developers of ISP, namely
Sarvani Vakkalanka, Anh Vo, and Michael DeLisi. We also
acknowledge the contributions of Sriram Aananthakrishnan
who created the happens-before viewer of ISP and Subodh
Sharma who added the facility to detect functionally irrelevant
barriers. Thanks also to Greg Watson of IBM for encouraging
us to contribute GEM to Eclipse.

REFERENCES

[1] “MPI 2.1 Standard,” http://www.mpi-forum.org/docs/.
[2] “Test Results Comparing ISP, Marmot, and mpirun,” http:

//www.cs.utah.edu/fv/ISP Tests.
[3] S. F. Siegel, “Verifying Parallel Programs with MPI-

Spin,” in PVM/MPI User’s Group Meeting, ser. LNCS,
vol. 4757, 2007, pp. 13–14.

[4] S. Vakkalanka, A. Vo, G. Gopalakrishnan, and R. M.
Kirby, “Reduced Execution Semantics of MPI: From
Theory to Practice,” in FM, 2009, pp. 724–740.

[5] S. Aananthakrishnan, M. Delisi, S. S. Vakkalanka, A. Vo,
G. Gopalakrishnan, R. M. Kirby, and R. Thakur, “How
Formal Dynamic Verification Tools Facilitate Novel Con-
currency Visualizations,” in PVM/MPI, ser. LNCS, vol.
5759, 2009, pp. 261–270.

[6] S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M.
Kirby, R. Thakur, and W. Gropp, “Implementing Ef-
ficient Dynamic Formal Verification Methods for MPI
Programs,” in PVM/MPI, ser. LNCS, vol. 5205, 2008,
pp. 248–256.

[7] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan,
R. M. Kirby, and R. Thakur, “Formal Verification of
Practical MPI Programs,” in PPoPP, 2009, pp. 261–269.

[8] S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby,
“Dynamic Verification of MPI Programs with Reductions
in Presence of Split Operations and Relaxed Orderings,”
in CAV, 2008, pp. 66–79.

[9] “The Eclipse Parallel Tools Platform,” http://www.
eclipse.org/ptp.

[10] S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, and R. M.
Kirby, “Scheduling Considerations for Building Dynamic
Verification Tools for MPI,” in Proceedings of the 6th
Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging (PADTAD), held in conjunction
with the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2008), July 20-21
2008, ACM 2008.

[11] “Total View Concurrency Tool,” http://www.
totalviewtech.com.

[12] J. S. Vetter and B. R. de Supinski, “Dynamic Software
Testing of MPI Applications with Umpire,” in SC, 2000,
article 51.

[13] B. Krammer, K. Bidmon, M. S. Mller, and M. M. Resch,
“MARMOT: An MPI Analysis and Checking Tool,” in
ParCo, 2003.

[14] R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski, and
A. Sæbjörnsen, “Improving Distributed Memory Appli-
cations Testing by Message Perturbation,” in PADTAD,
2006.

[15] “UPC and OpenMP Parallel Programming and Analy-
sis in PTP with CDT,” http://www.eclipsecon.org/2010/
sessions/sessions?id=1428.

[16] L. Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System,” Commun. ACM, vol. 21, no. 7,
pp. 558–565, 1978.

[17] “ParMETIS - Parallel Graph Partitioning and Fill-
reducing Matrix Ordering,” http://glaros.dtc.umn.edu/
gkhome/metis/parmetis/overview.

[18] “Developing Scientific Applications using Eclipse and
the Parallel Tools Platform,” http://scyourway.nacse.org/
conference/view/tut134.

[19] G. Gopalakrishnan, “Dynamic Verification of Message
Passing and Threading,” PPoPP Tutorial, 2010.

[20] G. Gopalakrishnan, R. M. Kirby, S. Vakkalanka, and
A. Vo, “Practical Formal Verification of MPI and Thread
Programs,” PVM/MPI Invited full-day Tutorial, 2009.

[21] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R.
de Supinski, M. Schulz, and G. Bronevetsky, “A Scal-
able and Distributed Dynamic Formal Verifier for MPI
Programs,” in Supercomputing (SC), 2010, accepted in
SC10. http://www.cs.utah.edu/fv/DAMPI/sc10.pdf.

[22] A. Vo, G. Gopalakrishnan, S. Vakkalanka, A. Humphrey,
and C. Derrick, “Seamless Integration of Two Ap-
proaches to Dynamic Formal Verification of MPI Pro-
grams,” PLDI Workshop 2010.

