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Abstract. We consider the problem of verifying MPI programs that
use MPI_Probe and MPI_Iprobe. Conventional testing tools, known to be
inadequate in general, are even more so for testing MPI programs con-
taining MPI probes. A few reasons are: (i) use of the MPI_ANY_SOURCE
argument can make MPI probes non-deterministic, allowing them to
match multiple senders, (ii) an MPI_Recv that follows an MPI probe need
not match the MPI_Send that was successfully probed, and (iii) simply
re-running the MPI program, even with schedule perturbations, is in-
sufficient to bring out all behaviors of an MPI program using probes.
We develop several key insights that help develop an elegant solution:
prioritizing MPI processes during dynamic verification, handling non-
determinism, and safe handling of probe loops. These solutions are in-
corporated into a new version of our dynamic verification tool ISP. ISP is
now able to efficiently and soundly verify larger MPI examples, including
MPI-BLAST and ADLB.

1 Introduction

The correctness of MPI programs is of paramount importance, especially con-
sidering the growing cost of conducting large-scale simulations, and the losses
(opportunity costs and unreliable results) due to errant or crashing simulations.
Conventional testing oriented approaches are woefully inadequate for finding
bugs in MPI programs. To appreciate the magnitude of the problem, consider
an MPI program with five processes where each process can make five MPI
calls (called ‘Generic MPI Example’). Such a program has over 10 billion po-
tential interleavings (schedules)! Unaware of which interleavings induce control
flow variations down the execution path leading to bugs, testing tools often pur-
sue a ‘best effort’ randomization of the interleavings. Unfortunately, given the
exponentially growing execution space, these techniques do not attain adequate
coverage of the relevant interleavings [1].
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While static analysis and model-based verification (e.g., modeling programs
in dialects (e.g. [17]) of SPIN [13]) are two widely followed formal approaches,
the former generate false alarms causing a designer to spend weeks confirming
whether a reported bug is genuine [12], while the latter requires designers to re-
express an MPI program in an alternate notation. Thus, both these approaches
prove impractical for realistic MPI programs, especially when also faced with
the need to hand-model the semantics of the MPI calls and the surrounding C
code, repeating all this for each program tuning step. In contrast, our approach
— dynamic formal verification — runs the program after replacing the native
scheduler with a formal verification scheduler. Pioneered by Godefroid [11] and
later improved in the dynamic partial order (DPOR) approach [10], dynamic
verification enjoys a growing presence, in tools such as CHESS [2], MODIST
[23], CREST [8], Bandera [9], Java PathFinder [3], and Inspect [24].

Our dynamic verification approach for MPI programs based on a customized
DPOR algorithm called Partial Order avoiding Elusive interleavings (POE) [16,
20-22] explores all relevant interleavings parsimoniously. Consider a special case
of the Generic MPI Example with exactly one wild-card (MPI_ANY_SOURCE) re-
ceive “Recv(from *)” in process PO which is matched by sends Send1(to P0) and
Send2(to P0) issued by processes P1 and P2. Let all other MPI calls be point-to-
point MPT calls. POE will explore just two interleavings, one where Send1(to P0)
matches Recv(from *) and the other where Send2(to P0) matches Recv(from *).
because these cases can affect verification outcome by conveying different values
to the wildcard receive. Moreover, POE enforces these matches by dynamically
rewriting Recv(from *) into Recv(from P1) and Recv(from P2) over two succes-
sive replays of the program. Permuting the issue order of point-to-point calls is
pointless for finding safety violations. ISP has been used to verify a number of
real-world MPI programs (e.g., ParMETIS [14], MADRE [18], and the Implicit
Radiation Solver or IRS [7]) for the absence of deadlocks, resource leaks, com-
munication races, and assertion violations [21,22]. ISP has been released [4] to
run on Linux, Mac OS/X, and Windows, supporting the MPI libraries MPICH2,
Open-MPI, and Microsoft MPI, supporting > 60 MPI 2.1 functions.

MPI_Probe detects the presence of a receivable message, while MPI_Iprobe
call is its non-blocking counterpart. Here, we present the addition of MPI_Probe
and MPI_Iprobe to ISP, so far deliberately postponed due to their highly non-
deterministic behavior. Several key insights finally helped us design a sound and
efficient algorithm, now allowing us to verify two large examples - MPI-BLAST
and ADLB — that make heavy use of Probes.

Related Work: Pioneering work on formal methods for MPI began with MPI-
SPIN [17], a SPIN-based model checker that can be used to verify MPI programs
for deadlocks and safety errors. Its need for hand-built verification models was
already mentioned. ISP is believed to be the only dynamic formal verification
tool for MPI. Non-MPI dynamic formal verification tools (e.g., [2,23]) have no
awareness of the MPI semantics — hence inapplicable for MPI.



2 Dynamic Interleaving Reduction with MPI Probes

The reason why handling Probe and Iprobe is an involved process is captured by
the following three examples. (Note: Unless otherwise indicated, we assume that
Iprobe is called in a polling-loop until its flag is set to true — the most common
usage of Iprobes. We also represent MPI_ANY_SOURCE by a *. For simplicity, we
will ignore the data payloads, tags, and statuses of these messages and only focus
on the destination/source of the sends and receives. End Note:)

Example-1:

PO: Isend (to P1); Ssend(to P2); Wait ();
P1: Iprobe (from *, &status); Recv (from status.MPI_SOURCE), Recv (from *)
P2: Recv(from PO), Ssend (to P1);

If this example is naively run on a regular MPI platform, one may find that P0’s
Isend(to P1) enables P1’s Iprobe to exit its loop. This causes P1’s receive
to actually receive P0’s Isend(to P1) itself (the message that was probed).
Thereafter, P0’s Ssend will match P2’s Recv, and then P2’s Ssend will match
P1’s Recv. If this program is ported and run on another machine, one may find
a different outcome: (i) while P0’s Isend is active, P0’s Ssend can post. (ii) this
causes P2’s Recv to fire, followed by P2’s Ssend. (iii) Now we can have both
P0’s Isend and P2’s Ssend become candidates for P1’s Iprobe match (because
this is a wildcard Iprobe, where * shows MPI_ANY_SOURCE).
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Fig. 1: Different Possible Matching of Iprobes

Formal tools such as ISP must discover the most general set of such executions

possible on any platform and find bugs in them. It must also discover these
behaviors by parsimoniously exploring interleavings. Our new algorithms are
designed with these goals in mind; in particular, the insight that allows us to
handle Example-1 is as follows:
Recognize the priority level at which a dynamic verifier must fire probes. In other
words, by delaying the wildcard Iprobe, we can allow both match possibilities
the chance of being discovered. This approach is, fortunately, a fundamental
part of POE in handling wildcard receives [21]. Our new algorithm now simply
incorporates this approach for wildcard probes also. Also when multiple probe
matches are found, our new algorithm also performs dynamic rewriting, as was
done in ISP for wildcard receives, as explained in our Generic MPI Example.

An important issue that arises when dealing with Iprobe is that it is not a
priori known how many times MPI_Iprobe will be called from within the probe
loop until it returns true, even after a send operation that directs the probing
process has been launched. To overcome this non-deterministic behavior, our
scheduler employs the following approach:



When eligible sends are found for Iprobes, the scheduler of ISP must busy-wait
on the Iprobes until they return true. Since matching sends are already posted,
the busy-wait loops are guaranteed to terminate. However, by doing this, we do
not consider the case where matching sends have been initiated, but the Iprobe
call can still non-deterministically return false. For our verification purposes, we
assume that the false code path contains only harmless statements. A complete
verification solution might require other analysis methods such as static analysis,
for which we are also actively exploring.

There are other subtleties associated with probes; they are illustrated through
the next two examples:
Example-2:

PO: Isend(to P1); Ssend(to P2); Wait();
P1: Iprobe(from *, &status); Ssend(to P2);

Iprobe(from *, &status); Recv (status.MPI_SOURCE); Recv(from *);
P2: Recv(from PO); Recv (from P1); Ssend(to P1);

Despite similarities with Example-1, this example contains two Iprobes that
look very much the same, yet have very different possible matching sends. Here,
the first Iprobe in P1, having to complete before the Ssend (to P2) in P1,
has only one possible matching send (namely Isend(to P1) issued by P0. Af-
ter the Ssend(to P2) of P1 is matched with P2’s Recv(from P1), the situa-
tion is now played out similarly to the previous example. This allows the next
Iprobe to see two possible matching sends, namely P0’s Isend(to P1) and P2’s
Ssend(to P1). ISP has to consider both these matches in two different inter-
leavings.

The high level observations from this example are the following.
Recognize the local completion semantics of Iprobes. Iprobe calls have to be
completed before any other following MPI calls in the same process. The delayed
execution of ISP has to take this into account.
Example-3:

PO: Recv(from P1); Send (to P1);
P1: Iprobe(from PO, &flag, &status);
if (flag == false) Send(to PO) else Recv (from PO);

From this example, it is straightforward to see that busy waiting on Iprobe
inside the scheduler is not always safe (the singly threaded scheduler can go into
an infinite loop, as no send has been posted). Busy-waiting is safe only when
matching sends for Iprobe are already determined. This example describes the
simplification of a pattern that is found repeatedly in many large MPI programs.

Our new algorithm handles such situations as follows: The Iprobe is delayed.
Recognize that busy-waiting for IProbes to return is not always safe. The Iprobe
calls should be allowed to return, with the flag set to false, when the execution
cannot progress anymore and a matching send has not yet been found.

3 ISP Overview
At a high level, ISP works by intercepting the MPI calls made by the target
program and making decisions on when to send these MPI calls to the MPI



library. This is accomplished by the two main components of ISP: the Profiler
and the Scheduler.

The Interposition Layer: The interception of MPI calls is accomplished by
compiling the ISP interposition layer together with the target program source
code. The interposition layer makes use of the profiling mechanism PMPI. It
provides its own version of MPI_ffor each corresponding MPI function f. Within
each of these MPI_f, the profiler communicates with the scheduler using TCP
sockets? to send information about the MPI call that the process wishes to make.
It will then wait for the scheduler to make a decision on whether to send the
MPI call to the MPI library or to postpone it until later. When permission to
fire f is granted from the scheduler, the corresponding PMPI_f will be issued to
the MPI run-time. Since all MPI libraries come with functions such as PMPIL_f
for every MPI function f, this approach provides a portable and light-weight
instrumentation mechanism for MPI programs being verified.

The ISP Scheduler: The scheduler is where our main scheduling algorithm,
namely POE (Partial Order avoiding Elusive interleavings) is carried out. The
scheduler meets the following objectives: G1: discovers the maximal set of sends
that can match a wildcard receive (viewed across all MPI-standard compliant
MPT libraries); G2: accurately models the semantics of the global operations
(such as barriers) of MPI. In MPI, not all MPI operations issued by a pro-
cess complete in that order, and a proper modeling of this out-of-order comple-
tion semantics is essential in order to meet goals G1 and G2. For example, two
MPI_Isend commands issued in succession by an MPI process P1 to the same
target process (say P2) are forced to match in order, whereas if these MPI_Isends
are targeted to two different MPI processes, then they may match contrary to
the issue order. As another example, any operation following an MPI_Barrier
must complete only after the barrier has completed, while an operation issued
before the barrier may linger across the barrier, and actually complete after the
barrier!

Section 3 provides an ISP overview and summarizes the POE algorithm.
Section 4 begins an elaboration of our main contributions, namely support for
Probes and Iprobes.

Main Steps of the POE Algorithm: The POE algorithm works as follows.
There are two classes of statements to be executed: (i) those statements of the
embedding programming language (C, C++, and Fortran) that do not invoke
MPI commands and (ii) the MPI function calls. The embedding statements in
an MPI process are local in the sense that they have no interactions with those of
another process. Hence, under POE, they are executed in program order. When
an MPI call f is encountered, the scheduler records it in its state; however, it
does not (necessarily) issue this call into the MPI run-time. (Note: When we
say that the scheduler issues/executes MPI call f, we mean that the scheduler
grants permission to the process to issue the corresponding PMPI_f call to the
MPI run-time). This process continues until the scheduler arrives at a fence,

3 When running within a local machine, ISP uses unix sockets to reduce communica-
tion overhead.



where a fence is defined as an MPI operation that cannot complete after any
other MPI operation following it. Note that both MPI_Probe and MPI_Iprobe are
considered fences. The list of such fences include MPI_Wait, MPI_Barrier, etc.,
and are formally defined in [21]. When all MPI processes are at their individual
fences, the full extent of all senders that can match a wildcard receive becomes
known, and dynamic rewriting can be performed with respect to these senders.
The collection of sends and matching receives can then be issued. For details,
please see [21].

Completes-Before Ordering: The Completes-Before (CB) ordering accurately
captures when two MPI operations x and y issued from the same process in pro-
gram order are guaranteed to complete in that order. For example, if an MPI
process P1 issues an MPI_Isend that ships a large message to P2 and then is-
sues MPI_TIsend that ships a small message to P3, it is possible for the second
MPI_Isend to complete first. A summary of the completes-before order of MPI
is as follows: (i) Send Order: Two Isends sending data to the same destination
complete in issue order. (ii) Receive Order: Two Irecvs receiving data from
the same source complete in issue order. (iii) Wildcard Receive Order: If a
wildcard Irecv is followed by another Irecv (wildcard or not), the issue order
is respected by the completion order. (iv) Wait Order: A Wait and another
MPI operation following it complete in issue order. For a formal description of
the CB relation, please see [21].

4 Implementation of Probe and Iprobe

Early issue of sends: As mentioned before, ISP does not allow the processes
to issue MPI calls into the MPI runtime system until all processes reach a fence
point (otherwise ISP cannot control from which send a wildcard receive chooses
to receive). Consequently, all receives as well as non-blocking sends are delayed.
Note: MPI_Sends are also treated as non-blocking, because they are usually
buffered if the message size does not exceed the eager send limit End Note:.
This delayed issue approach poses a major obstacle for implementing Probes
and Iprobes: the returned status of a probe call cannot be determined. This
problem can be solved by one of these two approaches:

— Having ISP manually manipulate the returned status, which would also re-
quire the trapping of MPI_Get_count.

— Issue the sends after the scheduler finishes collecting the envelope of the
sends. This early issue approach for sends is considered safe because, unlike
receives which can have non-deterministic behavior under the presence of
wildcards, sends are always deterministic. This allows the MPI library to
automatically take care of writing the returned status.

Although both methods are technically sound, we opted to go with the latter
approach since trapping more MPI calls incurs higher overhead for the scheduler.
However, the chosen approach also poses several difficulties, one of which can
be described by the following example: In the following code, assume that data is
large enough to exceed the eager send limit:



PO: Send (data, to P1); Probe(from P1, &status); Recv (from P1);
P1: Send (data, to PO); Probe(from PO, &status); Recv (from PO);

When the verification is run under no buffering mode?*, the program is ob-
viously deadlocked, and ISP detects the deadlock easily since the program is
instructed to execute all MPI_Sends as MPI_Ssends . The situation gets com-
plicated when the program is verified in buffering mode, under which ISP will
consider all MPI_Sends as non-blocking. However, because the size of data ex-
ceeds the eager send limit of the MPI library, the early issued MPI_Sends block
within the processes without the scheduler being aware of its states. In order
to address this problem, all MPI_Sends are converted to MPI_Isend following
by an MPI_Wait. The MPI_Sends are issued early as MPI_Isends and they are
completed by MPI_Waits when the scheduler finds a matching receive.

Basic POE algorithm with Probe: Consider Figure 2, which is a slightly
modified version of Example-1 mentioned earlier. We will use this example to
illustrate the basic steps of POE, with the italicized text indicating new changes
(i.e. the new contributions of this work) made to POE to handle Probes and
Iprobes.

1: if (rank == 0) {

2 MPI_Isend(to P1,&req); MPI_Barrier();

3 MPI_Ssend(to P2); MPI_Wait(&req);}

4: else if (rank == 1) {

4: MPI_Barrier(); while (!flag) MPI_Iprobe(from *, &flag, &status);
5 MPI_Recv(from status.MPI_SOURCE); MPI_Recv(from *);}

6: else if (rank == 2) {

7 MPI_Irecv(from O,&req); MPI_Barrier();

8 MPI_Wait(&req); MPI_Ssend(to P1);}

Fig. 2: Ordering Semantics and Operation Lifetimes

e Collect Isend of line 2, let the process issue it. Mark it as “issued”, but still

not “matched”

Collect Barrier (line 2), and do not issue.

Barrier is a fence, stop collecting from rank 0; switch to rank 1.

Collect Barrier (line 4), and do not issue; switch to rank 2.

Collect Irecv (line 7), and do not issue. Then collect Barrier (line 7), and

do not issue.

e A fence has been reached in every rank. Now, form a match set in priority
order, with the following priority order followed: barriers first, then non
wildcard sends/receives/probes, and finally wildcard sends/receives/probes.

e In our current state, there is indeed a highest-priority match set formed by
the barriers. Now, POE sends these Barriers into the MPI runtime through
PMPI_Barrier calls.

4 ISP can verify MPI programs under full buffering or no buffering. With the full
buffering mode, all MPI_Sends are buffered. With the no buffering mode, all MPI_Sends
are treated as MPI_Ssends



e The next ordering points (fences) are attained at Ssend (line 3), Iprobe (line
4), Wait (line 8). Note that the Ssend is already issued by the process due
to our early issue of send implementation (Apparently that process is now
blocking).

e The non-wildcard match-set of Ssend (line 3) and Irecv (line 7) are both
issued.

e Now we have reached the ordering point of Wait (line 3), Iprobe (line 4),
and Ssend (line 8). No other higher priority match sets exists, we can now
find out all the potential senders that can match the Iprobe.

e Dynamically rewrite Iprobe(*) into Irecv(P0) and Iprobe(P2), in two
different executions.

e Form the first match set of Iprobe(from PO) and Isend(to P1) of line 2.
Mark them both as matched. Only issue the Iprobe because the Isend was
already issued earlier. In addition, the scheduler needs to ensure that it should
not collect anymore calls from PO until a receive is posted for the Isend of
line 2. i.e., the fence point for PO is still in place. Since a matching send is
already issued earlier, PO will busy-wait on the Iprobe of line 8. Thus, the
program loop should execute only once!

e Form the second match set of Iprobe (from P2) and Ssend (to P1) of line
8. Pursue this interleaving though re-execution of the MPI program.

Soundness: Verification under ISP without probes is argued sound in [21].
The addition of probes preserves all our earlier assumptions. The engineering
of efficient support for probes is our main contribution here; the elementary
semantics of our engineering are similar to how wildcard receives were handled
earlier, and hence are sound.

5 Experimental Results

We have tested our new algorithm against all the aforementioned examples (the
original algorithm was tested against various benchmarks and in many cases
found deadlocks missed by conventional tools [1]). In all our tests, ISP verifies
the program with the correct number of interleavings, i.e., all the interleavings
explored by ISP are relevant. We also verified the subtle example found in the
MPI Standard (Example 3.18 [6]), where a Recv might end up not receiving what
the process probed (because the Recv was used to receive from MPI_ANY_SOURCE,
not the source returned by Probe through the status).

Consider Figure 3. Note that because the Recv of lines 9 and 11 are called
as wildcard receives and do not use the status returned by Probe, the program
becomes incorrect. ISP correctly sees that there are four possible matchings (two
for the first Probe, two for the first Recv). Here is a summary of what happens:

e All fence points reached at Send of line 2, line 4, and Probe of line 7.

Two possible matchings for Probe (*), one with Send of line 2, the other
with Send of line 4.

Pursue the 1st interleaving: rewrite Probe (*) into Probe (PO).

P2 reaches fence point again at Recv(*) of line 9. Both PO and P1 still at
previous fence points.



1: if (rank == 0)

2 MPI_Send (datal, MPI_INT, to P2);
3: else if (rank == 1)

4 MPI_Send (data2, MPI_DOUBLE, to P2);
5: else if (rank == 2) {

6 for (i =0; i < 2; i++) {

7 MPI_Probe(from *, &status);

8 if (status.MPI_SOURCE == 0)

9: MPI_Recv(datal, MPI_INT, from *);

10: else

11: MPI_Recv(data2, MPI_DOUBLE, from *);}}

Fig. 3: Pseudocode of pattern found in Example 3.18 in MPI 1.1 Standard

e Two possible matchings for Recv (*), one with Send of line 2, the other with
Send of line 4.

e Pursue the 1st interleaving: rewrite Recv(*) into Recv(P0O)

e No extra interleaving is required for the Probe and Recv of the second iter-
ation of the loop (only one matching send is possible).

e When the execution finishes, pursue second interleaving: rewrite Probe (*)
of line 7 into Probe(P1), Recv(*) of line 9 into Recv(PO).

e Third interleaving: rewrite Probe (*) of line 7 into Probe (P0), the Recv (%)
of line 9 into Recv(P1).

e Fourth interleaving: rewrite Probe (*) of line 7 into Probe (P1), the Recv (*)
of line 9 into Recv(P1).

We have also tested ISP with MPI-Blast[5] and ADLB[15], two large and
non-trivial MPI programs (about 70K lines of code for MPI-Blast and 8K lines
of code for ADLB). Both of which have extensive usage of wildcard Probe and
Iprobe. In both cases, the new algorithm successfully verified both programs for
freedom from deadlocks and assertion violations. The verification was done for
a small number of processes. We also observed that the number of interleavings
grew very fast for high number of processes due to the high numbers of wildcard
probes.

6 Conclusions

We described our new algorithm to formally verify MPI programs for deadlocks,
resource leaks, and assertion violations under the presence of MPI_Probe and
MPI_Iprobe calls. The algorithm is implemented in our tool ISP. To the best of
our knowledge, ISP is the only dynamic verification tool for MPI that verifies
large and non-trivial MPI programs. The new algorithmic enhancements enable
ISP to handle a wider range of MPI applications.

Earlier, we mentioned that one drawback of the current implementation of
Probe is the large number of interleavings generated when the number of wild-
card calls is high. This has recently been addressed by more intelligently handling
MPI dependencies (future publication). We are also exploring other techniques
that downscale an MPI program while preserving the targeted bugs.
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