
A Symbolic Verifier for CUDA Programs

Guodong Li1, Ganesh Gopalakrishnan1, Robert M. Kirby1, Dan Quinlan2

1 School of Computing, University of Utah
2 Lawrence Livermore National Laboratory, Livermore, CA, USA

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods

General Terms Verification

Keywords CUDA, Formal Verification, Symbolic Analysis, SPMD
Program

1. Introduction
There is increasing interest in performing general-purpose com-
putations on GPUs such as the CUDA architecture [2]. Unfortu-
nately, programs on parallel architectures are prone to subtle cor-
rectness bugs caused by data races and incorrect exploration of par-
allelism. Traditional testing methods tend to miss bugs as they can-
not guarantee examining all relevant thread interleavings. Explicit
state model checking assumes concrete input values, again limit-
ing coverage, as it is expensive to obtain a sufficient set of concrete
program input values.

We present a preliminary automated verifier based on mechan-
ical decision procedures which is able to prove functional correct-
ness of CUDA programs and guarantee (modulo reasonable as-
sumptions) to detect bugs such races. We first encode the concur-
rent behavior of multiple threads to a constraint formula contain-
ing symbolic variables. We then send this formula to the Yices [3]
solver for satisfiability check to determine whether the correctness
is ensured or a bug is found. Our encoding ensures thatall possi-
ble input values and thread interleavingare considered,albeit in a
symbolic manner. To mitigate interleaving explosion, we employ a
symbolic partial order reduction (POR) technique.

1.1 Related Work

An instrumentation based technique [1] is reported to find races
and shared memory bank conflicts. However, they assume con-
crete inputs values, and only explore one thread interleaving. A
determinism (i.e. no races) checking tool [5] constructs constraints
from an automaton without considering the communication (e.g.
value passing) among threads. In contrast, our tool works on con-
trol flow graphs; and models communicating (and even interfering)
programs while deduce non-interference statically. It is trivial to
apply our method to check equivalence of two Cuda programs as it
suffices to conjunct the two models and compare the outputs.
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1.2 CUDA Programming Model

CUDA extends C by allowing the programmer to define C func-
tions, called kernels, that, when called, are executedN times in
parallel byN different CUDA threads. Each of the threads that exe-
cute a kernel is given a unique thread ID that is accessible within the
kernel through the built-inthreadIdx variable — a 3-dimensional
vector indexing athread block. A block contains multiple concur-
rent threads cooperating through shared memory and synchronizat-
ing by calling the barrier function syncthreads(). Threads in
different blocks will not synchronize by the barrier.

2. Symbolic Verifier
SAT-based Bounded Model Checking (BMC) is one of the lead-
ing techniques for model checking systems. It constructs a propo-
sitional formula enumerating all possible executions of length k.
That is, the system behavior is modeled by a propositional formula.
This formula along with the negation of a property to be checked
is dumped to a SAT solver for satisfiability check. If the solver
says yes, then the property is violated as witnessed by the counter
example returned by the solver. A representative BMC approach,
C-Bounded Model Checking (CBMC) [7], translates a C program
with no loops or function calls into single assignment form (SSA
form). It is extended to TCBMC [8] that handles multi-threaded C
programs by bounding the number of context switches.

Our method also translates the program into a bounded program
by unrolling the loops to the given bound and inlining functions.
However, our method differs from TCBMC and other traditional
methods in:

• We target CUDA programs which feature different synchro-
nization mechanisms such as using barriers instead of locks and
mutexes.

• We use an SMT solver instead of SAT solvers so as to handle
arrays, uninterpreted functions, etc. In contrast, TCBMC relies
on SAT solvers and assumes no arrays and other compound data
structures, thus it needs to preprocess the source program by
instantiating each possible value for an array index.

• We keep the program’s control flow structure rather than flat-
tening the program and guarding each statement with its path
condition. We also generate much simpler constraints. For in-
stance, for each shared variable read, TCBMC builds a con-
straint of sizeO(nv × nt), wherenv is the number of blocks
writing this variable andnt the number of threads; while our
method generates only a simple array assignment.

• We apply a POR technique to reduce redundant interleavings
based on the fact that Cuda programs are well synchronized.

2.1 Generic Modeling

The execution of a concurrent program is scheduler dependent.
Suppose threadst1 and t2 perform the following accesses on a



shared variablek, where each access is superscripted by the thread
id and subscripted by its position (e.g. line number) in the con-
trol flow. Depending on the execution order of the three writes,k’s
value read byt1 could bex, y or z, which result from schedules
{kt1

1 ; kt1
2 ; . . . }, {kt1

1 ; kt2
1 ; kt1

2 ; kt2
2 } and{kt1
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1 } respec-

tively. A comprehensive model should enumerate all these three
possibilities.
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The main idea of modeling concurrent executions is to associate
with each shared variable access a schedule id (SId), which indi-
cates its timestamp (step) in a schedule. The SId set in the above
example is{kt1

1 , k
t2
1 , k

t1
2 , k

t2
2 }; expressionk[kt

1] givesk’s value at
stepkt

1. An ordering of SIds constitutes a schedule. The follow-
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y. Note that this read atkt2
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k[kt2

1 −1]. A set of schedules can be specified by a constraint on the
orders. Clearly permuting these SIds on{1, . . . , 4} will generate all
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Now we show how to generate models for CUDA programs. We
show below a simple CUDA kernel and the generated constraint.
The variables in a threadt are superscripted byt; expressionv ⊎
(i 7→ x) denotes the update of arrayv by setting the element ati to
x; andite stands for “if then else”.

__global__ kernel (unsigned int* k) {
unsigned int s[2][3] = {{0,1,2},{3,4,5}};
unsigned int i = threadIdx.x;
unsigned int j = k[i] - i;
if (j < 3)

{ k[i] = s[j][0]; j = i + j; }
else

s[1][j && 0x11] = k[i] * j;
__syncthreads();
k[j] = s[2][1] + j;

}
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Logical formula are built according to a topological order of the
nodes in the CFG. During this process, SSA indexes are assigned
to variables; SIds are created for shared variable accesses.

Converting Basic Statements. The followingΓ constructs a log-
ical formula from single statements and expressions, wherenext
andcur return the next and the current SSA indices of a variable re-
spectively. Note that each shared variable access is associated with
its SId. A write to an array variable is actually modeled as an array

update.

Γ(e1 op e2) = Γ(e1) op Γ(e2)

Γ(v := e) = {
vnext(v) = Γ(e) if v is a local variable
v[vt

next(v)
] = Γ(e) otherwise

Γ(v) = {
vcur(v) if v is a local variable
v[vt

next(v)
] otherwise

Handling Control Flow. The SSA indices of the variables up-
dated in the two clauses of a branch statement “if c then blk1 else

blk2“ should be synchronized so that subsequent statements have
a consistent view of their values. The following example gives an
illustration:i3 = i2 is added into the first clause so that later oni2
is invisible and only variablei3 will be referred.

ite(c, i2 = e1, i3 = e2) becomes
ite(c, i2 = e1 ∧ i3 = i2, i3 = e2)

Such synchronization is done at the join node by inserting the
following formula intoΓ(blk1) (and similarly toΓ(blk2)), where
cur(blk, v) returnsv’s last SSA index inblk. For instance, in the
given examplest

2 = st
1 is added into the first clause of the “if”

statement, andjt
2 = jt

1 ∧ k[kt
1] = k[kt

1 − 1] the second clause.
Consequently, onlyst

2 will be referred in subsequent statements.

vj = vi for i = cur(blk1, v), j = cur(blk2, v) such thati < j

Constraining Schedules. An assignment to the SIds of a shared
variable determines a concurrent execution over the threads with
respect to this variable. Supposed there arem accesses, we assign
0, · · · , m − 1 to their SIds with respect to the program order in
each thread. A shared barrier has only one SId among all threads.
Given threadst1, · · · , tn, predicateORDER(t1, · · · , tn) constrains
the assignments by requiring:

• The program order must be respected in each thread.

• All SIds are natural numbers less thannt ×nv + nb, wherent,
nv andnb are the numbers of threads, accesses in each thread
and barriers respectively.

• All SIds have distinct values. This is enforced by introduced a
functionrank that mapsSId1 andSId2 to different values for
SId1 6= SId2. Note that, for anyf , f(i) 6= f(j) impliesi 6= j.

A valid schedule of the given example for two threads is:

k
t1
0 = 0 ∧ k

t1
1 = 1 ∧ k

t2
0 = 2 ∧ k

t2
1 = 3 ∧ k

t2
2 = 4 ∧

k
t1
2 = 5 ∧ bar0 = 6 ∧ k

t2
3 = 7 ∧ k

t1
3 = 8

Checking Properties. In order to detect races we record inaid
the thread id of an access. Theaid is set to⊥ at barriers. At
each write access with SIdi we check whether the previous access
operates on the same address as well as is from other threads:
aid[i − 1] /∈ {t,⊥}. If yes then a race is found. For example,
we give below the access ids and access types (R for read and W
for write) of the above schedule. The first two writes are preceded
by accesses from the same thread; the third by a barrier; and the
fourth by a write to a different address (jt1 6= jt2 ). Hence no
race is found for this schedule. As our encoding guarantees that all
valid schedules are investigated, a race exhibiting in any particular
schedule will not be missed.

SId : k
t1
0 k

t1
1 k

t2
0 k

t2
1 k

t2
2 k

t1
2 bar0 k

t2
3 k

t1
3

type : R i W i R i W i R i R i W j W j

aid : t1 t1 t2 t2 t2 t1 ⊥ t2 t1

Users can specify the properties to be checked using ourassume
and guarantee directives. If a preconditionassume(P ) and a
postconditionguarantee(Q) are specified, formulaP ∧ ¬Q is
added into the constraint. For example, we can specify the correct-
ness of the bitonic sort program over four threads as follows:



__global__ bitonic (int vals[]) {...}
void guarantee ()

{assert(vals[t]≤vals[t+1]≤vals[t+2]≤vals[t+3]);}

In practice, when a correctness property is to be checked, the
race detection can be disabled even for race sensitive programs
since it is examined implicitly,e.g.races may lead to the violation
of the property.

2.2 Incremental Modeling with Partial Order Reduction

The method presented in section 2.1 is designed to be generic,
e.g. even unstructed and interfering programs can be modeled
and checked. For example, each thread may execute statement
atomicAdd(k, 1) for counting, the order of executions doesn’t
matter; and races on shared variablek will not affect the correct-
ness of the program.

On the other hand, this method may suffer from the performance
problem due to the possibility of exploring too many schedules.
In practice users may assume certain patterns on CUDA programs
such as shared variable accesses are non-interfering and threads
synchronize in a specific manner. This allows room for perfor-
mance improvement using reduction techniques.

Partial order reduction (POR) exploits the commutativity of
concurrent transitions to prune redundant interleavings. Specifi-
cally, if i1, · · · , in are evaluated to distinct memory addresses, then
accessesvt1 [i1], · · · , vtn [in] arenon-conflictingand it suffices to
examine one arbitrary interleaving of them. The key of our POR
method is to identify and sequentialize non-conflicting accesses. so
that only one interleaving is investigated. Given an access atkt1

i

writing addressat1
1 , for another access atkt2

j that writes or reads
addressat2

2 , if t1 6= t2 ∧ a
t1
1 = a

t2
2 is unsatisfiable then these ad-

dresses do not overlap and the accesses are non-conflicting. In this
case we may specify an order in whichkt1

i happens beforekt2
j ;

or, as a simplification, removek[kt2
j ] and have the second access

reusek[kt1
i ] by settingkt2

j = kt1
i . In the above example, the first

three accesses tok are non-conflicting because their addresses are
the thread idt. For more complicated programs the challenge is to
determine the values ofat1

1 andat2
2 .

2.3 Barrier Interval

CUDA intra-block thread executions exhibit a regular pattern:
{t1, · · · , tn} execute→ barrier → {t1, · · · , tn} execute→ · · · .
Since an access before a barrier will never conflict with an ac-
cess after this barrier, we may focus on the accesses between two
consecutive barriers (so called abarrier interval or BI). If the ac-
cesses in a BI are non-conflicting, we build a transition constraint
by sequentializing them; then we move to the next BI. To improve
performance, we utilize Yices’sincremental SMT solvingfacility
that reuses existing conflict clauses in the context when checking
new expressions. As an illustration we consider the following pro-
gram where shared variables are marked with a hat for readability.

1 : jt := bit + t + 1; 2 : synthreads; 3 : e1 = bkt[bit];
4 : bkt[jt] = e2; 5 : synthreads; 6 : writebit

Let’s consider the case of two threadst1 and t2. The first BI
consists of statement 1. Since there is no write toi, accessesi[it10 ]
andi[it20 ] are non-conflicting and can be set toi[0], i.e.both of their
SIds are0. The transition upto statement 2 is:

TRANS(t1, t2)2 ≡ j
t1
1 = i[0] + t1 + 1 ∧ j

t2
1 = i[0] + t2 + 1

The second BI consists of a read and a write to variablek. We
need to determine whether their addresses may overlap for different
threads. GivenTRANS(t1, t2)2 ∧ t1 6= t2, expressionjt

1 = i[0] is
unsatisfiable fort ∈ {t1, t2}, so doesjt1

1 = jt2
1 , hence the accesses

to k are non-conflicting. In this case we set their SIds to0 to obtain
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Figure 1. Example CFGs.

the transition constraint upto statement 4:

TRANS(t1, t2)4 ≡ TRANS(t1, t2)2 ∧
V

t∈{t1,t2}
(Γ(et

1) = k[0][jt
1])

∧ k[1] = k[0] ⊎ (jt1
1 7→ Γ(et1

2 )) ⊎ (jt2
1 7→ Γ(et2

2 ))

If we remove the barrier at statement5, then the second BI includes
statementwrite bit. Expressionjt

1 = bi is satisfiable sincebi may be
written a value equal tojt1

1 or jt2
1 . In fact this conflict is reduced to

the conflict oni at statements3 and6, which will be caught in the
next step that performs check oni.

The key point here is to build the constraints following the
program order without considering interleavings. A race depending
on schedules will be reduced to another race that can be found
without thread interleavings. In the above example, althoughk[jt1 ]
and k[it2 ] may conflict in a schedule wherewrite it2 occurs
before the writek[jt1 ], this conflict is actually reduced to the
conflict oni that can be identified in the program order.

If all the shared variable accesses within a BI are proven to
be non-conflicting, then, as indicated by Theorem 2.1, the conflict
graph (obtained by inserting conflicting edge into the CFG) is
acyclic and the entire BI is race free.

Theorem 2.1. (Sequentializibility) Within a barrier interval, if
each pair of accesses, at least one of which is a write, is proven
to be non-conflicting with respect to the program order, then the
entire interval is race free and can be sequentialized.

Proof Sketch.We say that an expression isschedule independentif
its value is irrelevant to the schedules. Consider two accesses with
addressesi andj respectively on the same shared variable. If nei-
ther i nor j is dependent (control-dependent and data-dependent)
on a shared variable, then obviously expressioni = j is sched-
ule independent. Otherwise, supposei or j depends on a shared
variablek, if the accesses tok is non-conflicting,i.e.k is schedule
independent, then clearlyi = j is schedule independent as well.
Thus the checking is reduced to examiningk. If all accesses are
shown to be non-conflicting, then they are schedule independent.

2.4 Conditional Barrier

To facilitate symbolic analysis we maintain path conditions on the
edges. Path conditions are taken into consideration when addresses
are compared. Consider for example the CFG in Figure 1.a, formula
it1 = it2 ∧ p

t1
1 ∧ p

t2
1 is established when checking whether

accessesk[i] conflict.
Many CUDA programs are well synchronized such that BIs are

easy to identify. What if a barrier is within a conditional branch?
This requires us to continue exploring the other branch and build-
ing constraints until encountering another barrier. For the CFG in
Figure 1.a we also consider whetherwrite k[i] will conflict with
the accesses ins4.



Figure 1.b gives another illustration where the left branch con-
tains a barrier. Supposes0 is a statement containing no shared vari-
able access, the conflict check includes the following expressions
(here 6∼ denotes non conflicting). It may be noted that the com-
parison betweens1 ands3 is guarded by path condition¬p which
indicates thats3 cannot be reached by threadt2 through pathpt2

when threadt1 is ats1.

pt1 ∧ pt2 ⇒ s
t1
1 6∼ s

t2
1 pt1 ∧ ¬pt2 ⇒ s

t1
1 6∼ s

t2
2

pt1 ∧ ¬pt2 ⇒ s
t1
1 6∼ s

t2
3 ¬pt1 ⇒ s

t1
2 6∼ s

t2
3

which can be simplified by reusing the path conditions:

ite (pt1 , ite(pt2 , s
t1
1 6∼ s

t2
1 , s

t1
1 6∼ s

t2
2 ∧ s

t1
1 6∼ s

t2
3 ), s

t1
2 6∼ s

t2
3 )

This method works particularly well for structural correct pro-
grams [6] where threads make the same branch decisions. On the
other hand, since the generic method presented in Section 2.1 is
able to handle arbitrary barrier structures, it can be applied to those
tricky cases as well.

Generic Method vs. Incremental Method on Conflict Detection.
The incremental method establishes pairwise constraints on shared
variable accesses, thus the number of constraints isn×m wheren
andm is the number of writes and reads respectively. It is suitable
for BIs containing a small number of accesses. The generic method,
in contrast, relies on the SId assigned to each access, thus the
number of constraints is linear to the number of accesses. However
it may explore too many schedules than necessary. Hence our final
method is the combination of these methods as presented above.

2.5 Other Issues

Our method translates the program into a bounded program by
unrolling the loops to a certain bound. The unrolling can be done in
the incremental modeling phase. For example, given a loop guarded
by conditionp1, we first unroll it once and check the satisfiability
of p1 on the computed transition, if yes then we continue unrolling
until p1 doesn’t hold. Finally we get an acyclic CFG as illustrated
in Figure 1.a. To ensure preciseness we check and make sure that
the loop condition becomes false after the unrolling.

To model aliasing induced by pointers we may use a global ar-
ray to represent the shared memory. Since typical CUDA programs
exhibit very limited pointer functionality, esp. no pointer arithmetic
operations, this will not incur problems in practice.

CUDA programs are highly symmetric such that all threads
execute the same kernel parameterized by its thread id. In general
we only need to consider two threads for conflict check. In some
cases, the address of an access may depend on a value contributed
by multiple threads as illustrated below. This doesn’t bring us any
problem as we just need to add more threads when building the
model incrementally.

if p {i = a[t1] + a[t2]; } else {i = a[t1] + a[t3]; }
write a[i];

3. Experimental Results and Future Work
We performed preliminary experiments on a machine with an Intel
Pentium4 3.60GHz processor to check the reduction and the bitonic
sort program in CUDA SDK 2.0 Suite [2]. We use the ROSE com-
piler [4] to parse CUDA programs; the constraint generation time is
negligible. The following table shows the SMT solving time in sec-
onds. Heren denotes the number of threads; T.O denotes Time Out
(> 10 minutes). Correctness is proven for bug-free programs, and
Bug is for bugged programs obtained by removing barriers or mod-
ifying the statements intentionally to introduce bugs. Correctness
check takes longer time since the solver needs to prove unsatisfia-
bility ( i.e.absence of bugs) for all cases.

Property Reduction Bitonic Sort
n = 2 n = 4 n = 2 n = 4

Correctness 0.46 T.O 560 T.O
Bug 0.35 240 1.29 T.O
Correctness (with POR) <0.1 2.84 <0.1 3.7
Bug (with POR) <0.1 0.16 <0.1 0.45

We plan to address more synchronization schemes (e.g. inter-
block parallelism and CPU–GPU communication); and apply it to
verify the compilation and optimization of CUDA programs.
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