
Dynamic Verification of MPI Programs with Reductions

in Presence of Split Operations and Relaxed Orderings ?

Sarvani Vakkalanka Ganesh Gopalakrishnan Robert M. Kirby

School of Computing, University of Utah, Salt Lake City UT 84112, USA,
http://www.cs.utah.edu/formal verification/cav08

Abstract. Dynamic verification methods are the natural choice for de-
bugging real world programs when model extraction and maintenance
are expensive. Message passing programs written using the MPI library
fall under this category. Partial order reduction can be very effective for
MPI programs because for each process, all its local computational steps,
as well as many of its MPI calls, commute with the corresponding steps of
all other processes. However, when dependencies arise among MPI calls,
they are often a function of the runtime state. While this suggests the
use of dynamic partial order reduction (DPOR), three aspects of MPI
make previous DPOR algorithms inapplicable: (i) many MPI calls are
allowed to complete out of program order; (ii) MPI has global synchro-
nization operations (e.g., barrier) that have a special weak semantics;
and (iii) the runtime of MPI cannot, without intrusive modifications, be
forced to pursue a specific interleaving because of MPI’s liberal message
matching rules, especially pertaining to ‘wildcard receives’. We describe
our new dynamic verification algorithm ‘POE’ that exploits the out of
order completion semantics of MPI by delaying the issuance of MPI
calls, issuing them only according to the formation of match-sets, which
are ample ‘big-step’ moves. POE guarantees to manifest any feasible in-
terleaving by dynamically rewriting wildcard receives by specific-source
receives. This is the first dynamic model-checking algorithm with reduc-
tions for (a large subset of) MPI that guarantees to catch all deadlocks
and local assertion violations, and is found to work well in practice.

1 Introduction

MPI [1] programs are an important class of concurrent programs used for the
distributed programming of virtually all high performance computing clusters
in the world. MPI will also be widely used for programming peta-scale super-
computers under construction [2]. Typical MPI programs are C programs (or
C++/Fortran programs) that create a fixed number of processes at inception.
These processes then perform computations in their private stores, invoking var-
ious flavors of send and receive API functions in the MPI library to exchange
data, and also invoke global synchronization operations in the MPI library. Most
MPI programs create processes that eventually terminate.

? Supported in part by NSF award CNS00509379, Microsoft HPC Institute Program,
and SRC Contract 2005-TJ-1318.



MPI programs can contain many types of errors, including deadlocks, local
assertion violations, resource leaks, and numerical inaccuracies. The primary goal
of our work is to develop efficient methods to detect deadlocks and local asser-
tion violations in MPI programs. Dynamic verification methods are the natural
choice for verifying MPI programs because model extraction and model main-
tenance of MPI programs can be very expensive. This paper presents the first
dynamic verification algorithm called POE (Partial Order reduction avoiding
Elusive interleavings) for MPI that guarantees soundness (within the practical
limits of runtime verification) and employs an effective partial order reduction
algorithm. Of the many features of POE, the manner in which it guarantees
coverage and implements reduction during dynamic verification are our main
contributions. A good partial order reduction approach is crucial for verifying
MPI programs because these programs mostly perform their computations in
private stores, invoking MPI operations for message exchanges, where most (but
not all) of these operations commute. Also, MPI calls occur with a high static
and dynamic frequency, thanks to the many for loops in which MPI calls occur.

In this context, our verification tool ISP that uses the POE algorithm detects
deadlocks missed by existing state-of-the-art tools. While the MPI 2.0 library
itself supports over 300 MPI functions, ISP can handle 24 of the most commonly
used MPI functions. In this paper, we describe the handling of five of these func-
tions, namely MPI_Isend, MPI_Irecv, MPI_Barrier, MPI_Wait, and MPI_Test,
and refer to them as ‘send, receive, barrier, wait, and test.’ Send and receive
are, respectively, non-blocking operations, meaning that the issuing process can
start the activity and proceed to execute later instructions while the send/receive
proceeds in the background. The primary arguments of send are the destination
process (this may not be a compile-time constant), the data being shipped, and
a ‘handle.’ (Note: We do not detail some of the function arguments allowed by
MPI calls, such as MPI ‘tags’ that affect message matching. Our implementation
handles all allowed MPI arguments.) The issuing process may wait on the han-
dle or test the handle. A wait blocks till the send operation finishes, while test
returns false unless the send has finished, at which time it returns true. A send
is deemed to have finished when the background process of copying the message
out of the memory space of the sending process has finished. The arguments
of receive are the source process ID (not necessarily a compile-time constant),
the data receipt buffer, and a handle (with a semantics similar to the send han-
dle). Instead of specifying a specific source process, receive can also mention ‘*’,
which is a wildcard receive that is open for receipt from any send that targets
the receiving process. In effect, send and receive are split operations.

When an MPI process invokes a sequence of MPI calls, some of the calls
may complete out of program order. For instance, if a process P0 invokes two
consecutive non-blocking send operations targeting P1 and P2 respectively, the
second send is allowed to finish before the first one (especially if the second send
is shipping a much smaller amount of data). However, if both sends target the
same process (say P1), then FIFO message ordering is required. This relaxed
program order of MPI facilitates higher performance.

2



P0: MPI_ISend(to P1, data = 22); ...rest of P0...

P1: MPI_Irecv(*, x); if (x==22) then error1 else ...rest of P1...;

P2: MPI_ISend(to P1, data = 33); ...rest of P2...

Fig. 1. Simple MPI Example Illustrating Wildcard Receives

Dynamic verification with persistent set based reductions was introduced in
[5]. The dynamic partial order reduction algorithm (DPOR) [6] allows these
dependencies to be accurately computed based on runtime state. This algorithm
works by generating one interleaving of the program (maintained as a stack trace)
and generating its interleaving variants. It ensures that the set of transitions
explored from a state s forms a persistent set as follows. Consider the transitions
ti and tj of processes pi and pj respectively such that i < j in the current
interleaving (this means that in the current interleaving ti is executed before
transition tj). If ti and tj are dependent (i.e., ti can either enable or disable tj
and vice versa), and ti and tj are co-enabled, then pj is added to the pre-state of
ti hoping to eventually execute tj . . . ti. This approach does not work with MPI,
as explained with the help of a short example (Figure 1).

In this example, MPI processes P0 and P2 are targeting P1 which entertains
a ‘wildcard match,’ i.e., can receive from any process that has a concurrently
enabled ISend targeting P1. As soon as one such send is chosen (say P0’s), the
other send is not eligible to match with this receive of P1 (it has to match
another receive of P1 coming later). This disabling behavior of the sends induces
a dependency between them, as can be seen from the fact that the particular
send that matches may or may not cause error1 to be triggered. Consider some
i < j < k, and a trace t where the ith action of t, namely ti, is P2’s send, and
similarly tj is P1’s receive, and tk is P0’s send. In this trace, it is not necessary
that P0’s receive is matched with P2’s send just because ti is executed before tk.
MPI implements its own buffering mechanism that can cause one send to race
ahead of the other send. Formally, unlike in DPOR, MPI’s program order does
not imply happens-before [7] in an MPI program’s execution. Hence, it is possible
that tj is matched with tk. There is no way in an MPI run-time (short of making
intrusive modifications to the MPI library, which is often impossible because of
the proprietary nature of the libraries) to force a match either way (both sends
matching the receive in turn) by just changing the order of executing sends from
P2 and P0.
Roadmap: Section 2 presents an overview of POE and discusses related work.
Section 3 presents POE formally. Section 4 provides a summary of experimental
results. Section 5 concludes the paper.

2 Overview of POE, and Related Work

Section 2.1 presents the barrier semantics of MPI, followed by the POE algo-
rithm. Section 2.2 presents related work.

3



P0: S0(to P1, h0) ; B0 ; W(h0) ;

P1: R (*, h1) ; B1 ; W(h1) ;

P2: B2 ; S2(to P1, h2); W(h2) ;

Fig. 2. Illustration of Barrier Semantics and the POE Algorithm

2.1 Barrier Semantics and Overview of the POE Algorithm

Barrier Semantics: No MPI process can issue an instruction past its barrier
unless all other processes have issued their barrier calls. Therefore, an MPI pro-
gram must be designed in such a way that when an MPI process reaches a barrier
call, all other MPI processes also reach their barrier calls (in the MPI parlance,
these are collective operations); a failure to do so deadlocks the execution. While
these rules match the rules followed by other languages and libraries in sup-
porting their barrier operations, in case of MPI, it is possible for a process Pi

to have an operation OPi before its barrier call, for another process Pj to have
an operation OPj after Pj ’s matching barrier call, and where OPi can observe
OPj ’s execution. This means that OPi can, in effect, complete after Pi’s barrier
has been invoked. This shows that the program ordering from an operation to a
following barrier operation need not be obeyed during execution. This is allowed
in MPI (to ensure higher performance), as shown by the example in Figure 2,
and requires special considerations in the design of POE. In this example, one
MPI_Isend issued by P0, shown as S0, and another issued by P2, shown as S2,
target a wildcard receive issued by P11. The following execution is possible:
(i) S0(to P1, h0) is issued, (ii) R(*, h1) is issued, (iii) each process fully ex-
ecutes its own barrier, (B0, B1, or B2), and this “collective operation” finishes
(all the B’s indeed form an atomic set of events), (iv) S2(to P1, h2) is issued,
(v) now both sends and the receive are alive, and hence S0 and S2 become de-
pendent, requiring a dynamic algorithm to pursue both matches. Notice that S0
can finish after B0 and R can finish after B1. (Note: Because of the placement
of this barrier that is after P0’s send and P1’s receive, but before P2’s send, we
sometimes refer to such barriers as ‘crooked barriers.’)

To recapitulate, MPI respects program ordering between any MPI operation
x ∈ {barrier, wait, test} and the MPI operation immediately following x in pro-
gram order. A dynamic verification algorithm for MPI must therefore maintain
a completes-before relation ≺ (defined in Section 3.2), and use it to determine,
at runtime, all senders that can match a wildcard receive.2

POE Algorithm: We now present an overview of POE, as implemented by our
verification scheduler (called the POE scheduler) that can intercept MPI calls
and send them into the MPI run-time as and when needed:

1 While not central to our current example, we also take the opportunity to illustrate
how the handles h0 through h2, and MPI Wait (W) are used.

2 Section 3 presents another detail of MPI which we refer to as ‘trumping,’ captured
by another relation ≺c.

4



• The POE scheduler executes C program statements along each process. All C
statements are executed in program order. When the scheduler encounters
an MPI operation, it simply records this operation, but does not execute
it. This process continues till the scheduler arrives, within each process, at
an MPI operation that is program ordered with respect to some previously
collected (but not issued) MPI operation (we call these points fences).

• While at a fence point for all processes, since all senders that match a wild-
card receive are known, rewrite the receives into specific receives. In our
example, R(*) is rewritten into R(from P0) and R(from P2).

• Form match-sets. Each match-set is either a single big-step move (as in
operational semantics) or a set of big-step moves. Each big-step move is a
set of actions that are issued collectively into the MPI run-time by the POE
scheduler (we enclose them in 〈〈. . .〉〉). In our example, the match-sets are:
− { 〈〈 S0(to P1), R(from P0) 〉〉, 〈〈 S2(to P1), R(from P2) 〉〉 }
− 〈〈 B0, B1, B2〉〉

• Execute the match-sets in priority order, with all big-step moves executed
first. The execution of a big-step move consists of executing all its constituent
MPI operations. When no more big-step moves are left, then for each re-
maining set of big-step moves, recursively explore (according to depth-first
search) all the big-step moves contained in it. In our example, this results in
the big-step move 〈〈 B0, B1, B2 〉〉 from being performed first. Subsequently,
both the big-step moves in
{ 〈〈 S0(to P1), R(from P0) 〉〉, 〈〈 S2(to P1), R(from P2) 〉〉 }
are pursued.

Thus, one can notice that POE never actually issues into the MPI run-time
any wildcard receive operations it encounters. It always dynamically rewrites
these operations into receives with specific sources, and pursues each specific
receive paired with the corresponding matching send as a match-set in a depth-
first manner.

Additional Points About Barriers: It must be observed that the code snip-
pet in Figure 1 can be verified with DPOR if the technique of dynamic rewriting
of the wildcard receives is employed. However, the code snippet in Figure 2 can-
not be verified with DPOR even with dynamic rewriting of wildcard receives
employed. Due to the presence of the barrier, the send S2 can never be exe-
cuted before the send S0, whereas in DPOR, we will need dependent actions to
be replayable in both orders. In any interleaving of this example, however, S0
will always be issued before S2. The POE algorithm overcomes this problem by
executing the big-step move 〈〈 B0, B1, B2 〉〉, and then forming the match-set
{ 〈〈 S0(to P1), R(from P0) 〉〉, 〈〈 S2(to P1), R(from P2) 〉〉 }.

2.2 Related Work

In [8], it was observed that DPOR may offer a way to determine, at runtime,
which sends and receives can match in MPI programs. However, since no dynamic
verification tool was built, the issues discussed in Section 1 pertaining to the

5



difficulties of forcing specific send/receive matches were not faced. In [9], nothing
more than the standard DPOR of [6] was needed, as we handled only some of
the shared memory features of MPI for which a DPOR-like approach works.
In our 2-page tools paper [10], we actually implemented DPOR for many of
MPI’s communication commands, and in the process observed the unsoundness
resulting from our inability to force specific send/receive matches. The POE
algorithm takes advantage of our formal understanding of MPI (as captured in
an extensive TLA+ model for MPI we are building [11]), precisely builds the
completes-before relation ≺, uses it to discover potential send/receive matches
precisely, and employs dynamic rewriting to force desired matches.

While MPI-SPIN [12,13,14], which is based on SPIN [15], can detect the
kinds of errors that POE can detect, this approach inherently requires major
effort on the part of users in building, by hand, verification models of their MPI
programs in Promela [15]. Given the extensive number of C constructs and user-
level library calls used in writing many MPI programs, this effort is impractical
in those cases. MPI-SPIN does provide a reduction algorithm called the Urgent

Algorithm that allows all MPI send/receive channels to be treated as rendezvous
channels. However, this algorithm applies only to programs that do not use
wildcard receives (which are extensively used by many MPI program types). In
general, MPI-SPIN relies on SPIN’s POR algorithm which, unfortunately, does
not “understand” the commuting properties of MPI calls. In its favor, MPI-SPIN
supports a symbolic execution facility to compare a sequential algorithm against
an MPI implementation of the algorithm to detect numerical inaccuracies - a
feature not supported by ISP.

Other works [16,17,18,19] do not seem to run into the problems we run into
with MPI, including out-of-order completion, barriers, split operations, or run-
time scheduling realities.

The plethora of concurrency libraries catering to ‘multicore programming’
suggests that dealing with complex APIs will become important. Yet, most tools
in this area are based on the conventional ‘testing’ approach. ISP can now handle
24 MPI function types (detailed on our website). We have successfully handled
all 69 examples in the Umpire [4] tool distribution. These are examples for
which Umpire itself, and approaches such as Jitterbug [20] do not offer coverage
guarantees (conventional verification tools for MPI that we surveyed [21] are
unsound). Inserting randomized ‘padding’ delays to potentially perturb MPI’s
internal schedules (as done in ConTest [22], Jitterbug, Marmot [3], and Umpire)
is highly unreliable, and slows down testing by adding delays into computational
paths. For instance, for many of our examples containing wildcard receives pro-
vided on our website, Marmot missed generating many feasible schedules that
actually contain deadlocks.

6



P1 P2 P3

B1,1 B2,1 B3,1

R1,2(∗, 〈1, 2〉) B2,2 S3,2(1, 〈3, 2〉)
B1,3 S2,3(1, 〈2, 3〉) B3,3

R1,4(∗, 〈1, 4〉) W2,4(〈2, 3〉) W3,4(〈3, 2〉)
W1,5(〈1, 2〉) B2,5 B3,5

W1,6(〈1, 4〉)
B1,7

Fig. 3. An Example MPI Program

3 Formal Presentation of POE

3.1 Abstract Syntax

Let Nat = {0, 1, 2 . . .}, Bool = {0, 1}, and Bool⊥ = {0, 1,⊥}. Given P ∈ Nat

MPI programs, their PID (“MPI rank” of each process) set is {1 . . . P}, and
PID∗ is the set {1 . . . P} ∪ {∗} (∗ is to model ‘wildcard receives’; see below).
Let L ∈ PID → Nat be the lengths of the given programs, each program being
viewed as a sequence of instructions. For any function f , its application to any
argument i, f(i), is often written fi for brevity; for example L(1) (often written
L1) is the length of the first program. Also, a function f of two arguments can
be applied to two arguments i and j, written fi,j , or partially applied to one
argument i, and that is written fi (this partial application returns a function
which later “expects” a j). Let p ∈ PID → Nat→ I (where I is the set of MPI
instructions defined in this sequel) be the programs. Thus p1 . . . pP are the P

programs, and the jth instruction of the ith program is pi,j . Let l ∈ PID → Nat

be the program counters (PC) l1 . . . lP . Let f [i ← e] be function update, i.e.
f [i ← e] = (f \ {〈i, f(i)〉}) ∪ {〈i, e〉}. Also, map f lst = {f(i) | i ∈ lst}. Let
π1〈a, b〉 = a. For a set of pairs S, let f [S] denote function update performed for
every pair in S, i.e., f [S] = (f \ {〈i, f(i)〉 | i ∈ (map π1S)}) ∪ S.

Let h ∈ PID → Nat → Bool⊥ be the handles h1 . . . hP . In our formal
model, every instruction has a handle; it is only the case that W and T (MPI
wait and test instructions defined in this sequel) happen to use this handle in
a specific way. Handle hi,j is initially ⊥. In our description of POE, we use the
setting of hi,j to 0 to model POE encountering (collecting) instruction anyi,j(. . .)
in program order, and the setting to 1 to model POE issuing (executing) this
instruction. POE will (i) set hi,j to 1 out of program order (but still correctly
so according to ≺), and (ii) dynamically rewrite the wildcards before forming
match-sets and executing them. The total system state is 〈l, h〉 (we keep track
of the PC values and the handle array status).

The set of MPI instructions I is the smallest set that include the following:
Barrier, written Bi,j , Send, written Si,j(k, 〈i, j〉), where k ∈ PID is the process
targeted, and 〈i, j〉 is the handle used to track the progress of this Send, Receive,
written Ri,j(k, 〈i, j〉) where k ∈ PID∗ is the process from which the message

7



is sourced (∗ means ‘wildcard receive,’ i.e., the message is sourced from any
process), and 〈i, j〉 is the handle (as with send) to track the progress of this
Receive. We do not show the data payloads for sends S and receives R; when
needed in discussions, they will be shown as a third argument. For S (send)
and R (receive), their handle 〈i, j〉 is used by a following W instruction, or
tested by a following T instruction (not required to exist by the MPI standard,
and we also do not require the W/T to exist). I also includes Wait, written
Wi,j(〈m, n〉) where 〈m, n〉 refers to a handle. Wi,j(〈m, n〉) blocks till hm,n is set
to 1. This event occurs when the instruction which set hm,n to 0 finishes. (This
earlier instruction is an S or R.) I also includes Test, written Ti,j(〈m, n〉, l) where
〈m, n〉 refers to a handle and l is a PC. Ti,j(〈m, n〉, l) blocks till hm,n is set to
1, and this occurs when the instruction that set hm,n to 0 (an earlier S or R)
finishes, in which case the control transfers to the new PC l. Finally, I includes
a conditional goto to model loops (space prevents further discussion of goto and
T ).

Figure 3 illustrates our syntax. Process P1 has seven sequential commands,
and P2 and P3 each have five each. All proper MPI programs start with MPI_INIT,
and terminate with MPI_FINALIZE, and both these essentially have the semantics
of a barrier. Thus, the set B1,1, B2,1, and B3,1 models MPI_INIT. Likewise, the
set B1,7, B2,5, and B3,5 models MPI_FINALIZE. The set B1,3, B2,2, and B3,3 is a
‘crooked barrier’. Thus, notice that the two sends S2,3(1, 〈2, 3〉) and S3,2(1, 〈3, 2〉)
both target P1, and they can both potentially match with R1,2(∗, 〈1, 2〉).
Illustration: In this example, if R1,4(∗, 〈1, 4〉) is changed to R1,4(2, 〈1, 4〉), it is
possible that R1,2(∗, 〈1, 2〉) matches S2,3(1, 〈2, 3〉), and then S3,2(1, 〈3, 2〉) cannot
match R1,4(2, 〈1, 4〉) (this receive expects a message from P2, not P3). This
results in a deadlock. Such deadlocks cannot be detected through static analysis
alone, because in MPI, send targets (i.e., the 1 in S3,2(1, 〈3, 2〉)) and receive
sources can be computed at runtime.

3.2 Completes-before Relation of MPI

MPI guarantees process-pair-wise message delivery ordering with respect to the
issue orders of sends and receives. To illustrate this idea, consider two sends
that are issued by process i both targeting process j, and two matching receives
that are issued by process j, hoping to source from i. These sends and receives
must be carried out in program order. It is only when send operations target re-
ceive operations in different processes, or receive operations source from different
processes, that program order can be relaxed.

Specifically, suppose process i has a send Si,m(j, 〈i, m〉, d1), and another send
Si,n(j, 〈i, j〉, d2), for n > m. Here, d1 and d2 are the data payloads. Suppose
process j has a receive Rj,u(i, 〈j, u〉, x1), and another receive Rj,v(i, 〈j, v〉, x2),
for v > u. Here, x1 and x2 are j’s receive buffers, MPI guarantees FIFO message
ordering and ensure that x1 is bound to d1 and x2 to d2 during execution. The
POE algorithm must never issue these sends and receives out of order. In fact,
the POE algorithm can ‘fire and forget’ these operations in program order, and
be guaranteed that the MPI runtime will match them in this appropriate order.

8



Now consider a slightly different example where there are three processes i, j,

and k in the system. The receives are Rj,u(k, 〈j, u〉, x1) and Rj,v(∗, 〈j, v〉, x2),
where k 6= i, and furthermore, let process k never issue a send to process j. In
this case, the first receive (which cannot match any of the offers made by i) will
be trumped by the second receive, which now goes ahead; the result will be that
x2 is bound to d1. The POE algorithm has to be aware of this ‘trumping rule.’

A third variant of our example is one where the sends are as above, the
receives are Rj,u(k, 〈j, u〉, x1) and Rj,v(∗, 〈j, v〉, x2), where k 6= i, but now there
is a third process k which issues a send, Sk,l(j, 〈k, l〉, d3). Now, Rj,v(∗, 〈j, v〉, x2)
does not trump. The receive Rj,u(k, 〈j, u〉, x1) can indeed match the new send
Sk,l(j, 〈k, l〉, d3), thus binding x1 to d3, and x2 to d1. POE has to be aware of
this lack of trumping, as well. Thus, we note that when the sequence
Rj,u(k, 〈j, u〉, x1); . . . Rj,v(∗, 〈j, v〉, x2) appears in process j, the second receive
can conditionally complete before the first one, in a manner that depends on the
runtime state of the system.

We now define the completes-before relation, ≺. The POE algorithm pre-
sented in Section 3.4 will be based on ≺. A variant of ≺ called conditionally

completes (≺c) is used to model the concept of trumping discussed earlier. We
do not discuss ≺c any more in this paper, for the sake of simplicity (it is of course
incorporated into our implementation of POE, in forming match-sets according
to ≺c).

∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, . . .) ≺ Si,j2(k, . . .)
∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1 (k, . . .) ≺ Ri,j2 (k, . . .)
∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1 (∗, . . .) ≺ Ri,j2(k, . . .)
∀i, j1, j2 : j1 < j2 ⇒ Ri,j1(∗, . . .) ≺ Ri,j2 (∗, . . .)
∀i, j1, j2, k : j1 < j2 ⇒ Si,j1(k, 〈i, j1〉) ≺Wi,j2 (〈i, j1〉)
∀i, j1, j2, k : j1 < j2 ⇒ Ri,j1 (k, 〈i, j1〉) ≺Wi,j2 (〈i, j1〉)
∀i, j1, j2 : j1 < j2 ⇒ Bi,j1 ≺ anyi,j2(. . .)
∀i, j1, j2 : j1 < j2 ⇒ Wi,j1(. . .) ≺ anyi,j2(. . .)

FIFO Lemma: Any MPI program execution respecting ≺∗, the transitive clo-
sure of ≺, guarantees the required FIFO message orderings between MPI pro-
cesses.

3.3 Match-Set Formation

Fence Instructions: For an instruction j ∈ I , fence(j) holds exactly when for
all succeeding instructions k ∈ I in program order, j ≺∗ k. Notice that ‘wait’ and
‘barrier’ act as fences, and depending on the MPI program, other instructions
may attain a fence status.
Ancestor Relation: The ancestor of an instruction i is some instruction j where
j ≺∗ i. The set ancestors(i) is the set of indices of i’s ancestors. To exploit the
FIFO Lemma, POE issues instruction i to the MPI system only after all its
ancestors j have been issued. POE can issue any instruction not connected by
≺∗ out of order, as the MPI system itself considers such instructions semantically
unordered (and hence may reorder them).

9



Match-set definitions: We now define all match-set types. The match-set type
MS∗

R will be a set of big-step moves. The match-set type MSB will be one big-
step move containing all the matching barriers. Match-set type MSR will contain
exactly one send Si,u(j, . . .), and its matching non wild-card receive Sj,v(i, . . .)).
Match-set type MSW will be a big-step move of exactly one wait, and MST

will be a big-step move of exactly one test. Consider the big-step moves 〈〈. . .〉〉
themselves to be sets.

The main difficulty in forming match-sets is to determine which sends can
match a wildcard receive. To compute MS∗

R, we start with a set containing just
the wildcard receive in question. We then seek the maximal number of additional
sends that we can add to this set, without hitting a fence. Finally we break ∗
into specific instances of PIDs. We also must make sure that for the members of
any MS, all its ancestors have been issued into the MPI system. Modeling this
requires the state of the h array.

Formal Definition of MS(l, h): We define match-sets as a function of l (the
array of PCs) and h (the array of handles). In our definitions, we often refer to
a “band” of past PC values where the MS might lie; this is what the function ρ

used below denotes:

MSB(l, h) = if ∃ρ ∈ PID → Nat : ∀x ∈ PID : 1 ≤ ρx ≤ lx

∧ ∀k ∈ PID : pk,ρk
= Bk,ρk

∧ ∀u ∈ ancestors(pk,ρk
) : hk,u = 1

∧ hk,ρk
= 0 then 〈〈Bk,ρk

| k ∈ PID〉〉 else ∅ .

MS∗

R(l, h) = if ∃ρ ∈ PID → Nat s.t. ∀x ∈ PID : 1 ≤ ρx ≤ lx

∧ ∃i ∈ PID : pi,ρi
= Ri,ρi

(∗, . . .) ∧ ∀u ∈ ancestors(pi,ρi
) : hi,u = 1

∧ hi,ρi
= 0

∧ ∀k ∈ PID\{i} : pk,ρk
= Sk,ρk

(i, . . .) ∧ ∀u ∈ ancestors(pk,ρk
) : hk,u = 1

∧ hk,ρk
= 0

then { 〈〈Ri,ρi
(k, . . .), Sk,ρk

(i, . . .)〉〉 | k ∈ PID \ {i}} else {∅} .

MSR(l, h) = if ∃ρ ∈ PID → Nat s.t. ∀x ∈ PID : 1 ≤ ρx ≤ lx

∧ ∃i, j ∈ PID : pi,ρi
= Ri,ρi

(j, . . .) ∧ pj,ρj
= Sj,ρj

(i, . . .)

∧ ∀u ∈ ancestors(pi,ρi
) : hi,u = 1 ∧ ∀u ∈ ancestors(pj,ρj

) : hj,u = 1

∧ hi,ρi
= hj,ρj

= 0

then 〈〈Ri,ρi
(j, . . .), Sj,ρj

(i, . . .)〉〉 else ∅ .

MSW (l, h) = if ∃i ∈ PID, 1 ≤ j, k ≤ li, k < j : pi,j = Wi,j(〈i, k〉)

∧ hi,j = 0 ∧ hi,k = 1 ∧ ∀u ∈ ancestors(pi,j) : hi,u = 1

then 〈〈Wi,j(〈i, k〉)〉〉 else ∅ .

Priority Scheme: Let MS(l, h) be an abbreviation for invoking MSB(l, h),
MSR(l, h), and MSW (l, h) in some order. If this invocation returns ∅, we will
explicitly invoke MS∗

R(l, h) and pursue the contents of this set, if any. The above
is the priority search scheme that POE uses (postpone wildcard receives until
all senders are discovered).

10



3.4 The POE Algorithm

We present the transition relation as an inference system which infers new states.
Let 〈l, h〉 ∈ Rch mean that the state 〈l, h〉 has been reached. We invariantly
maintain that hi,li = 0. In the following, hi,j is set to 1 only by match-set
moves. Non-MS moves are PC advances, and they result only in hi,j being set to
0 (the instruction is encountered but not issued). For a process i, a PC advance
move is permitted if the instruction at its current PC is not a fence, or if the
instruction has been issued (handle is set). The atomic transitions are the one
of the MS(l, h) moves, a PC move, or all the moves within MS∗

R(l, h). Also
move(l, h, R) takes a system state 〈l, h〉, an atomic transition (set of instructions)
R, sets the handle bits at the indices of the instruction. It does not advance the
PC, as that will be done by the ‘PC move’ transition. Formally, let α ∈ I → PID

and β ∈ I → Nat be such that for instruction r ∈ I , r = pα(r),β(r). Then,
move(l, h, R) = 〈l, h[{〈〈α(r), β(r)〉, 1〉 | r ∈ R}]〉.

Init: 〈l0, h0〉 ∈ Rch, where l0 = λi.1 and h = (λij.if j = 1 then 0 else ⊥).

Step: for 〈l, h〉 ∈ Rch

// All the deterministic singleton ample-set moves
if MS(l, h) 6= ∅ then move(l, h, MS(l, h)) ∈ Rch

// PC move which is also a singleton ample-set move
elseif ∃i ∈ PID : ¬fence(pi,li) ∨ (hi,li = 1)

then 〈l[i← li + 1], hi[(li + 1)← 0]〉 ∈ Rch

// Recursive exploration upon dependency. Ample = enabled.
elseif MS∗

R(l, h) 6= {∅} then (map (λr.move(l, h, r)) (MS∗

R(l, h))) ⊆ Rch

else Deadlocked.

Illustration of POE: POE will form match-sets (MS) from only those in-
structions that have a handle value of 0. In system state 〈l, h〉, if there exists
a MS other than MS∗

R (will be a subset of I), POE picks any such set and
invokes its operations (sets hi,j for that instruction to 1). MS∗

R is a set of
subsets of I , and POE recursively invokes each member set in any order (in
the implementation, these are backtrack points). If no MS can be built in the
current system state, if possible, POE advances the PC li of some process i;
else, the system is deadlocked. In our example (Figure 3), the first MS will be
〈〈B1,1, B2,1, B3,1〉〉, and these barrier calls are issued, setting h1,1, h2,1 and h3,1

to 1. When R1,2(∗, 〈1, 2〉) from P1 is encountered, h1,2 is set to 0 (instruction
encountered, but recorded for future issue). Likewise, from P3, we encounter
S3,2(1, 〈3, 2〉), and set h3,2 = 0; we do not issue this send, as we have not carved
out the maximal MS and we have not hit a fence. The system advances the
PCs, finds the next MS 〈〈B1,3, B2,2, B3,3〉〉, and invokes it, setting the handle
bits to 1. Following this, it will encounter S2,3(1, 〈2, 3〉), setting h2,3 = 0. At this
point, further PC advancement will place P1’s PC facing R1,4(∗, . . .), which is
≺ ordered after R1,2(∗, . . .), and hence serves as a fence within P1. Now P2 en-
counters fence W2,4, and P3 encounters fence W3,4(〈3, 2〉). At this point, the set
〈〈S2,3(1, 〈2, 3〉), S3,2(1, 〈3, 2〉), R1,2(∗, 〈1, 2〉)〉〉 is promoted to an MS status. The
dynamic rewriting process produces two MSs (actually a set containing two MS

11



sets) 〈〈R1,2(2, 〈1, 2〉), S2,3(1, 〈2, 3〉)〉〉 and 〈〈R1,2(2, 〈1, 2〉), S3,2(1, 〈3, 2〉)〉〉, and re-
cursively invokes POE with these MSs. When the last MS-B is encountered, this
corresponds to MPI_FINALIZE. At this time, if any handle is still a 0, and no
more MS remains, an invalid end-state error is reported. In this example, no
deadlock is encountered.
Correctness of POE: The correctness of POE consists of two steps. First,
we must ensure that we abide by the FIFO Lemma in all scheduling decisions.
This follows from POE never issuing actions contrary to ≺. However, whenever
≺ does not hold, POE may issue actions out of order. Second, we must ensure
that we are executing according to conditions C0-C2 ([23]) of a correct partial
order reduction algorithm (we do not require C3 owing to the acyclicity of MPI’s
state space). C2 is satisfied because local assertions only observe local process
steps which are singleton ample. The priority scheme on Page 10 ensures that
all singleton ample-sets contributed to by match-sets other than MS∗

R are ex-
hausted. These preserve C1. Finally, the dependencies among the sends targeting
a wildcard receive are correctly handled by doing a full recursive expansion of
the constituents of MS∗

R, which also preserves C1.

4 Summary of Experimental Results

We have implemented the POE algorithm in our ISP runtime model-checker
for MPI that is downloadable, along with our examples, from our website. A
summary of our results is as follows:

• In all the 69 examples from the Umpire test suite, ISP produces the same
theoretical number of interleavings required by our formal algorithm. This
number is far smaller than the number of interleavings without reduction.

• Existing MPI program testing approaches (e.g., Umpire, Marmot) cannot
detect deadlocks with assurance on many simple examples. In all these cases,
the POE algorithm detects the deadlocks (see our webpage for the results).

• For some examples with several hundreds of lines of code that have no wild-
card receives (where the code checks for local assertions), POE requires ex-
actly one interleaving. Existing testing tools will wastefully explore multiple
interleavings where the MPI operations have no dependencies.

• POE’s setting of handle bits turns into collecting MPI operations without
issuing them. These book-keeping steps of ISP have negligible overheads.
The main overhead of ISP is that of restarting MPI for each replay. In
[10], we provide techniques that can dramatically reduce this overhead. This
technique will be integrated into our current ISP version.

• ISP supports 24 MPI functions, including many collective operations, MPI
communicators, and non-deterministic wait functions such as MPI_WAIT_ANY.
However, in a significant number of cases, we can allow an MPI program to
issue operations even outside of this set. These extra functions (such as
MPI_TYPE_CREATE) can still be issued into the MPI run-time without being
trapped by the verification scheduler of POE.

12



• POE’s scheduler is designed to be parallelized using MPI in future versions
of ISP. Also a static analysis package to remove computations that do not
affect control flow has been prototyped and will be integrated into ISP.

5 Concluding Remarks

We have described an algorithm for handling out of order execution and barrier
semantics in verifying MPI programs for deadlocks and local assertions. We
emphasize that POE works on unaltered MPI source programs. The verification
tool implementing POE works well in practice, and is sound within the practical
limits of runtime verification. An example of such a limitation is captured by the
MPI Test function. The outcome of MPI Test (true or false) depends on the speed
of computation of MPI processes. It is possible for a given MPI runtime to always
produce the true outcome, for example. We are investigating the modification
of the open source MPICH 2.0 library to overcome such limitations.

We have a formal TLA+ model of MPI 2.0 [11] (and we even have an ex-
ecution framework that takes short MPI programs and runs them against this
semantics [24]), we are in a position to rigorously prove the MPI semantics de-
scribed in this paper.
Acknowledgements: The authors wish to thank Rajeev Thakur of Argonne
National Labs and Bill Gropp of UIUC for their ideas and encouragement.

References

1. Marc Snir and Steve Otto. MPI-The Complete Reference: The MPI Core. MIT
Press, Cambridge, MA, USA, 1998.

2. Invited Talk by Al Geist at EuroPVM/MPI 2007, “Sustained Petascale: The Next
MPI Challenge.

3. Bettina Krammer, Katrin Bidmon, Matthias S. Mller, and Michael M. Resch. Mar-
mot: An MPI analysis and checking tool. In Parallel Computing 2003, September
2003.

4. Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of MPI
applications with Umpire. In Supercomputing, pages 70–79, 2000.

5. Patrice Godefroid. Model checking for programming languages using verisoft. In
POPL, pages 174–186, 1997.

6. Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In Jens Palsberg and Mart́ın Abadi, editors, POPL,
pages 110–121. ACM, 2005.

7. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

8. Robert Palmer, Ganesh Gopalakrishnan, and Robert M. Kirby. Semantics driven
dynamic partial-order reduction of MPI-based parallel programs. In Parallel and
Distributed Systems - Testing and Debugging (PADTAD-V), July 2007.

9. Salman Pervez, Robert Palmer, Ganesh Gopalakrishnan, Robert M. Kirby, Ra-
jeev Thakur, and William Gropp. Practical model checking method for verifying
correctness of MPI programs. In EuroPVM/MPI, pages 344–353, 2007.

13



10. Sarvani Vakkalanka, Subodh V. Sharma, Ganesh Gopalakrishnan, and Robert M.
Kirby. ISP: A tool for model checking MPI programs. In Principles and Practices
of Parallel Programming (PPoPP), pages 285–286, 2008.

11. Guodong Li, Michael DeLisi, Ganesh Gopalakrishnan, and Robert M. Kirby. For-
mal specification of the MPI-2.0 standard in TLA+. In Principles and Practices
of Parallel Programming (PPoPP), pages 283–284, 2008.

12. Stephen F. Siegel. Efficient Verification of Halting Properties for MPI Programs
with Wildcard Receives. In Proceedings of Verificaiton, Model Checking,and Ab-
stract Interpretation: 6th International Conference, VMCAI, 2005.

13. Stephen F. Siegel and George S. Avrunin. Modeling Wildcard-free MPI Programs
for Verification. In to appear in Proceedings of the ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming, 2005.

14. Stephen F. Siegel and George S. Avrunin. Verification of MPI-based software for
scientific computation. In In Proceedings of the 11th International SPIN Workshop
on Model Checking Software, pages 286–303, Barcelona, April 2004.

15. Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

16. Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby.
UUCS-07-008:Runtime Model Checking of Multithreaded C/C++ Pro-
grams. Technical report, University of Utah, School of Computing, 2007.
http://www.cs.utah.edu/research/techreports/2007/ps/UUCS-07-008.ps.

17. Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Dis-
tributed dynamic partial order reduction based verification of threaded software.
In Dragan Bosnacki and Stefan Edelkamp, editors, SPIN, volume 4595 of Lecture
Notes in Computer Science, pages 58–75. Springer, 2007. Model Checking Software,
14th International SPIN Workshop, Berlin, Germany, July 1-3, 2007, Proceedings.

18. Madan Musuvathi and Shaz Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 446–455, 2007.

19. http://research.microsoft.com/projects/CHESS/.
20. Richard Vuduc, Martin Schulz, Dan Quinlan, Bronis de Supinski, and Andreas

Saebjornsen. Improved distributed memory applications testing by message per-
turbation. In Parallel and Distributed Systems: Testing and Debugging (PADTAD
- IV), 2006.

21. Subodh V. Sharma, Ganesh Gopalakrishnan, and Robert M. Kirby.
A survey of MPI related debuggers and tools. Technical Re-
port UUCS-07-015, University of Utah, School of Computing, 2007.
http://www.cs.utah.edu/research/techreports.shtml.

22. Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel
Ur. Framework for testing multi-threaded Java programs. Concurrency and Com-
putation: Practice and Experience, 15(3-5):485–499, 2003.

23. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 2000.

24. Robert Palmer, Michael Delisi, Ganesh Gopalakrishnan, and Robert M. Kirby. An
approach to formalization and analysis of message passing libraries. In Formal
Methods for Industry Critical Systems (FMICS), Berlin, 2007.

25. Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey Zhel-
tov, and Stanislav Bratanov. Automated, scalable debugging of MPI programs with
intel message checker. In SE-HPCS ’05, pages 78–82, 2005.

14


	Dynamic Verification of MPI Programs with Reductions in Presence of Split Operations and Relaxed Orderings 

