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Abstract. Model checking of safety properties can be scaled up by pool-
ing the CPU and memory resources of multiple computers. As compute
clusters containing 100s of nodes, with each node realized using multi-
core (e.g., 2) CPUs will be widespread, a model checker based on the
parallel (shared memory) and distributed (message passing) paradigms
will more efficiently use the hardware resources. Such a model checker
can be designed by having each node employ two shared memory threads
that run on the (typically) two CPUs of a node, with one thread respon-
sible for state generation, and the other for efficient communication, in-
cluding (i) performing overlapped asynchronous message passing, and
(ii) aggregating the states to be sent into larger chunks in order to im-
prove communication network utilization. We present the design details
of such a novel model checking architecture called Eddy. We describe the
design rationale, details of how the threads interact and yield control,
exchange messages, as well as detect termination. We have realized an
instance of this architecture for the Murphi modeling language. Called
Eddy Murphi, we report its performance over the number of nodes as
well as communication parameters such as those controlling state aggre-
gation. Nearly linear reduction of compute time with increasing number
of nodes is observed. Our thread task partition is done in such a way
that it is modular, easy to port across different modeling languages, and
easy to tune across a variety of platforms.

1 Introduction

This paper studies the following question:

Given that shared memory programming will be supported by multicore
chips (multi-CPU shared memory processors) programmed using light-
weight threads, and given that such shared memory processors will be
interconnected by high bandwidth message passing networks, how best
to design a safety model checker that is (i) efficient for such hardware
platforms, and (ii) is modular to permit multiple implementations for
different modeling languages?
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The importance of this question stems from many facts. First of all, basic finite-
state model checking must continue to scale for large-scale debugging. Multiple
CPUs per node are best exploited by multi-threaded code running on the nodes;
the question, however, is how to organize the threads for high efficiency and
modularity, especially given that thread programming is error-prone. Moreover,
most parallel versions of safety model checkers employ hash tables distributed
across the nodes, with new states possibly sent across the interconnect to be
looked up in these tables (as was done since the very first model checkers of
this kind, namely Stern and Dill [1] and Lerda [2]); we do not deviate from this
decision. What we explore in this paper is whether, by specializing the threads
running within each node to specific tasks, (i) the state generation efficiency
can be kept high, (ii) communication of states across the interconnect can be
performed efficiently, and (iii) the overall code remains simple and modular to
be trustworthy.

We have developed a parallel and distributed model checking architecture
called Eddy that meets the above objectives. A specific model checker following
this architecture, called Eddy Murphi (for the Murphi [3] modeling language) has
been developed and released. To the best of our knowledge, such a model checker
has previously not been discussed in the literature. There are a wide array of
choices available in deciding how to go about designing such a model checker.
The decisions involved are how to allocate the CPUs of each compute node to
support state generation, hash-table lookup, coalescing states into bigger lines
before shipment, overlapped computation and communication, and handling dis-
tributed termination. Many of these choices may not achieve high performance,
and may lead to tricky code. We are placing a great deal of importance on
achieving simple and maintainable code, allowing the model checker to be easily
re-targeted for a different modeling language, and even make the model checker
self calibrating over a wide range of hardware platforms. While much remains
to be explored as well as implemented, Eddy Murphi has realized many of the
essential aspects of the Eddy architecture. In particular, Eddy Murphi employs
shared memory CPU threads in each node running POSIX PThreads [4, 5] code,
with the nodes communicating using the Message Passing Interface (MPI, [6]).
It dramatically reduces the time taken to model check several non-trivial Murphi
models, including cache coherence protocols.

We have also: (i) ported Eddy Murphi to work using a Win32 porting of
PThreads [7] as well as Microsoft Compute Cluster Server 2003 [8]; (ii) cre-
ated Eddy SPIN, a preliminary distributed model checker for Promela1. Both
Eddy SPIN and Eddy Murphi are based on the same architecture: while the state
generation (“worker”) thread more or less executes the reachability computation
aspects of the standard sequential SPIN or Murphi, the communication threads
are organized in an identical manner. In the rest of the paper, we will focus on
the internal organization of Eddy Murphi, the impact of its performance over the
number of nodes as well as communication parameters such as those controlling
state aggregation, as well as scalability results from a catalog of benchmarks.

1 Eddy SPIN was based on a refactored implementation of SPIN [9] which did not
exhibit the scalability advantages reported here for Eddy Murphi owing to its very
high overheads; this will be corrected in our next implementation.
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FIFO Queue Q = ∅; /* BF consumption queue */

HashTable T = ∅; /* for visited states */

/* Returns true iff φ holds in all the reachable states */

bool BFS(NFSS S , SafetyProperty φ)
{

let S = (S, I,A, next);
/* is there an initial state which is an error state? */

foreach s in I {

i f (! IfNotVisitedCheckEnqueue(s))

/* IfNotVisitedCheckEnqueue returned false , thus s is

an error state and S does not satisfy φ */

return false;
}

/* visit */

while (Q 6= ∅) {

s = Dequeue(Q);
/* s expansion */

foreach ( s_next , a) in next(s) {

i f (! IfNotVisitedCheckEnqueue(s_next))

return false;
} /* foreach */

} /* while */

/* error not found , S satisfies φ */

return true;
} /* BFS () */

/* returns false if s is an error state (i.e. does not

satisfy φ) , true otherwise */

bool IfNotVisitedCheckEnqueue(s, AP φ)
{

i f (s is not in T) {

i f (!φ(s))
return false;

HashInsert(T, s);

Enqueue(Q, s);

}

return true;
} /* IfNotVisitedCheckEnqueue() */

Fig. 1. Explicit Breadth–First Search
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Since we do not have the ability to compare “apples to apples” with other ex-
isting model checkers, our contributions fall in the following categories. (i) We
provide a detailed description of the algorithms used in Eddy Murphi. (ii) We
report the performance of Eddy Murphi across a wide spectrum of examples.
In one case, Eddy Murphi model-checked a very huge protocol in 9 hours using
60 nodes when sequential Murphi had not enough memory resources to verify it
and a disk-based sequential Murphi [10]2 did not finish even after a week. (iii) In
[11], we provide extensive experimental results, the full sources of Eddy Murphi,
as well as a Promela verification model that explicates the detailed organization
of its thread and message passing code.

The rest of this paper is organized as follows. Section 1.1 presents specific
design considerations that lead to the selection of a natural architecture and im-
plementation for Eddy. Section 2 presents the algorithm used by Eddy. Section 3
has our experimental results. Section 4 concludes.
Related Work: Parallel and distributed model checking has been a topic of
growing interest, with a special conference series (PDMC) devoted to the topic.
An exhaustive literature survey is beyond the scope of this paper. Many dis-
tributed model-checkers based on message passing have been developed for Mur-
phi and SPIN. Distributed BDD-based verification tools have been widely stud-
ied (e.g., [12]). In [13], a multithreaded SAT solver is described. The idea of
coalescing states into larger messages for better network utilization in the con-
text of model checking was pointed out in [14]. Previous parallel Murphi versions
has been devised by Stern and Dill [15], Sivaraj and Gopalakrishnan [16], and
Kumar and Mercer [17]. As said earlier, a parallel and distributed framework for
safety model checking similar to Eddy is believed to be new.

1.1 Design Considerations for Eddy

Our main goal is to have the two threads used in Eddy run without too many syn-
chronizations. This increases the intra node parallelism. Furthermore, if thread-
binding to CPUs is available (depending on the underlying OS), then context-
switching overhead can also be reduced. Hence, we design our two threads to
have complementary tasks, thus maximizing the parallelism between them. One
thread will be responsible for state generation, hash table lookup and error anal-
ysis, while the other one will handle the communication part, i.e. receiving and
sending messages. We also give to this latter thread the task to group up states
to be communicated in a big coalesced chunk of memory called a line. We ex-
perimentally show that this is far more efficient than suffering the overhead of
sending individual states across.
Terminology: A Nondeterministic Finite State System (shortened NFSS in the
following) S is a 4-tuple (S, I,A, next), where S is a finite set of states, I ⊆ S
is the set of the initial states, A is a finite set of labels and next : S → 2S×A

is a function taking a state s as argument and returning a set next(s) of pairs

2 This version of Murphi is able to limit the performance slowdown due to disk usage
to an average factor of 3.
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(t, a) ∈ S ×A. Given an NFSS S = (S, I,A, next) and a property φ defined on
states (i.e., φ : S → {true, false}), we want to verify if φ holds on all the states
of S (i.e., for all s ∈ S, φ(s) holds). The algorithm in Figure 1 is what Murphi
essentially implements3. We seek to parallelize this algorithm based on a number
of established as well as new ideas. Our objective is to support distributed hash
tables as in contemporary works. This assigns each state s to a home node p(s)
determined by a surjective partitioning function p that maps state vectors to
node numbers lying in the range {1 . . .N}. Kumar and Mercer [17] study the
effect of partitioning on load balancing—an important consideration in parallel
model checking. We consider the selection of partition functions to be orthogonal
to our work.

Given all this, the state generation rate and the communication demands of
a parallel safety model checker very much depends on many factors. The amount
of work performed to generate the successor states of a given state is a critical
consideration. In Murphi, for instance, each “rule” is a 〈guard, action〉 pair,
with guards and actions being typically coarse-grained. Often, the guards and
actions span several pages of code, often involving procedures and functions. In
other modeling languages such as Promela and Zing [18], the amount of work to
generate the successors of a given state can vary greatly. After gaining sufficient
understanding, we hope to have a user-assisted calibration feature for all model
checkers constructed following the Eddy architecture. In the rest of this paper,
we assess results from our preliminary implementation.

2 A New Algorithm for Parallel Model Checking

We present the Eddy Murphi algorithms in Section 2.1, after a brief overview of
the MPI and PThread functions used.

MPI functions employed in Eddy Murphi MPI (Message Passage Inter-
face, [19, 20, 6]) is a message-passing library specification, designed to ease the
use of message passing by end users, library writers, and tool developers. It is
in use in over 60% of the world’s supercomputers and clusters. We now present
a simplified description of the semantics of certain MPI functions used in our
algorithm descriptions (we also take the liberty to simplify the names of these
functions somewhat).

– MPI Isend(obj, dest node, msg label) sends obj to dest node, and the
message is labeled msg label. Note that this operation is non-blocking (the
‘I’ stands for immediate), i.e. it does not wait for the corresponding receive.
Here, obj is an object of any type, dest node is a node of the computing
network, msg label is the label message (chosen between state, termination,
termination probe). The following always holds:

3 This rather straightforward algorithm is included in this paper to help contrast our
distributed model checker.
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• if msg label is state, then obj is a set of states;
• if msg label is termination probing, then obj is a token structure (see

Fig. 4);
• if msg label is termination, then obj is a boolean value (to be assigned

to the global variable result).

– MPI Iprobe(src node, msg label) returns true if there is a message sent
by the src node node with the label msg label for the current node. Oth-
erwise, false is returned. As the ‘I’ suggests, also this call is non-blocking.
If src node is ANY SOURCE instead of a specific node, then only the message
label is checked.

– MPI Recv(src node, msg label) returns the message sent by the src node

node to the current one with the label msg label. We will call this function
only after a successful call to MPI Iprobe, thus we are always sure that
a MPI Isend had previously sent something to the current node with the
given msg label. Again, if src node is ANY SOURCE, then the current node
is retrieving the message without checking which node is the sender (only
the message label is checked).

– MPI Test(obj) returns true iff obj has been successfully sent, i.e. if the
sending has been completed. Note that this is necessary because we are
using MPI Isend, that performs an asynchronous sending operation. We will
call this function only for test sending completion for states.

– MPI MyRank() returns the rank or identifier of the node.

Finally, with #MPI Isend(msg label) (resp., #MPI Recv(msg label)), we
denote the number of MPI Isend (resp. MPI Recv) performed with the message
label msg label. Note that here msg label is always state, i.e. we count only
the sending operations regarding sets of states.

PThread functions employed in Eddy Murphi POSIX PThread [4, 5] is a
standardized programming interface for threads usage. In our model checker we
use the following functions. Note that, w.r.t. the PThread standard, we again
change the function interface to make their usage clearer:

– pthread create(f) creates a new thread. Namely, the thread that calls
this function continues its execution, whilst a new thread is started which
executes the function f.

– pthread exit() terminates the thread which calls it.
– pthread join() called by the “main” thread (i.e. the one having called

pthread create), suspends the execution of this thread until the other one
terminates (because of a pthread exit()), unless it is already terminated.

– pthread yield() Forces the calling thread to relinquish use of its processor.

2.1 Eddy Murphi Algorithms

In Figures 2, 3 and 4, we show how the breadth-first (BF) visit of Figure 1
is modified in our parallel approach. Since we use a SPMD (Single Program
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Multiple Data) paradigm, the code listed is executed on all the nodes of the
computational network. The worker thread is described in Figure 2, and the
communication thread in Figures 3 and 4.

The worker thread is somewhat similar to the standard BF visit of Figure 1,
but with important changes. One is that only the computation root node gen-
erates the start states. However, the most important change is in the handling
of the local consumption queue Q.

In fact, whenever a new state s is generated, and s turns out not to be
an error state, then a states distribution function (called owner() in Figure 2)
determines if s belongs to the current node or not. In the first case, the current
node inserts s in Q as well as in the local hash table, unless it was already visited,
as it happens in a standalone BF. In the second case, s will be sent to the node
p(s) owing it; p(s) will eventually then explore s upon receiving it.

However, in order to avoid too many messages between nodes, we use a
queuing mechanism that allows to group as many states as possible in a unique
message. To this aim, the worker thread enqueues s in a communication queue
(CommQueue in Fig. 2). Then, the communication thread will eventually dequeue
s from CommQueue and send it p(s). The details of this queuing mechanism will
be explained in Section 2.2.

Note that only the worker thread can dequeue states from the local BF con-
sumption queue Q. On the other hand, the enqueuing of states in Q is performed
both by the worker thread (see function CheckState() in Fig. 2) and the com-
munication thread. This latter case happens as a result of receiving states from
some other node (see function ReceiveStates() in Fig. 3). Since the states re-
ceived from other nodes could be both new or already visited, the worker thread
performs a check after having dequeued a state received from another node. To
distinguish between local generated states (already checked for being new or
not) and received states (on which the check has to be performed), Q stores pairs
(state, boolean) instead of states.

As for the communication thread, it consists of an endless loop essentially
trying to receive and send messages. As stated earlier, there are three type of
messages, each carrying:

– states; this kind of messages can be exchanged by every couple of nodes,
where the sender is the node generating the states and the receiver is the
node owning the states. More details on the sending of this kind of messages
are in Section 2.2.

– termination probings; here, MPI node ranks are used to imagine the com-
putation network to form a ring on which the termination probing message
is exchanged only between neighbors. This allows us to call the termination
probing message a token. Thus, each node receiving a token from its left
neighbor, will forward it to its right neighbor. However, the forwarding is
performed only when the current node is unable to do anything locally (i.e.,
the worker thread is sleeping due to empty BF consumption queue and there
are no messages to be sent or received).
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/* local data (each node has its own copy of this ) */

FIFO Queue Q = ∅; HashTable T = ∅;
bool Terminate = false ; bool result = true;
FIFO_Queue_lines CommQueue [NumNodes ] = ∅;
SafetyProperty φ;

bool ParBFS(NFSS S) {

pthread_create (CommThread );

i f IAmRoot () { /* i.e., MPI_MyRank () == 0 */

foreach s in I {

i f (! CheckState (s)) { Terminate = true; break;}

} }

while (! ParTerminate ()) {

(s, checked ) = Dequeue(Q);
i f (! checked ) { /* sent by some other node */

i f (s in T) continue;
else HashInsert(T, s);

}

foreach ( s_next , a) in next(s) {

i f (! CheckState (s_next)) { Terminate = true; break;}

} }

Terminate = true; pthread_join ();

return result;

} /* ParBFS () */

bool CheckState (state s) {/* false if error state found */

owner_rank = owner(s);

i f ( owner_rank == MPI_MyRank ()) { /* this node owns s */

i f (s is not in T) {

i f (!φ(s)) { result = false ; return false ;}

HashInsert(T, s); Enqueue(Q, (s, true));
} /* otherwise , s is already visited */

} else { /* this node does not own s */

i f (!φ(s)) { result = false ; return false ;}

Enqueue_line (CommQueue [owner_rank ], s);

return true;
} /* CheckState () */

bool ParTerminate () { /* true if computation is over */

i f ( Terminate ) return true;
i f (Q 6= ∅) return false;
i f (! Terminate ) sleep;

i f ( Terminate ) return true;
return false ; /* here , new states are in Q */

} /* ParTerminate () */

Fig. 2. Worker thread
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CommThread () { /* Communication thread */

while (true) {

ProcMess (); /* if termination was received , exits */

i f ( Terminate ) End(true); /* φ does not hold */

DoSends ();

Free_lines (CommQueue ); /* tests sending completion */

StableCondTokenProc (); /* termination probing */

} } /* CommThread () */

ProcMess () { /* Processes incoming messages */

i f ( MPI_Iprobe (ANY_SOURCE , state)) ReceiveStates ();

i f ( MPI_Iprobe (ANY_SOURCE , termination )) {

/* some other nonroot node found an error , or the root

decided the search is finished */

result = MPI_Recv (ANY_SOURCE , termination );

End( false);
}

i f ( MPI_Iprobe (prev_ring_node , termination probing ))

ReceiveTermProb ();

} /* ProcessMessages () */

ReceiveStates () { /* Processes incoming state messages */

S = MPI_Recv (ANY_SOURCE , state);

foreach state s in S {Enqueue(Q, (s, false));}
/* here Q might be empty because of thread scheduling */

i f ( worker sleeping && Q 6= ∅)
wake the worker thread up; /* wake up and work */

} /* ReceiveStates () */

DoSends () { /* Try to send what it is now in CommQueue */

foreach computing node n different from MPI_MyRank () {

while ( lines_ready (CommQueue [n])) {

S = Dequeue_line (CommQueue [n]);

MPI_Isend (S, n, state);

} } } /* DoSends () */

End(bool broadcast ){ /* Shuts down CommThread () */

i f ( broadcast ) { /* terminate all the other nodes */

foreach computing node n {

MPI_Isend (result , n, termination ); MPI_Wait ();

} }

Terminate = true; /* also the worker thread terminates */

i f ( worker sleeping )

wake the worker thread up; /* wake up and die */

pthread_exit ();

} /* End () */

Fig. 3. Communication thread (continues in Fig. 4)
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/* Local data (each node has its own copy of this ) */

bool TokenValid = IAmRoot ();

struct { int snt; int rcvd ; } token;

/* Possibly starts or continues the token passing */

StableCondTokenProc () {

i f ( TknVldAndNthngToDo ()) {

/* initially , only the root might enter */

i f ( IAmRoot ()) {

/* token processing to see if we can terminate */

token.snt = token.rcvd = 0;

} else {

token.snt += # MPI_Isend (state);

token.rcvd += # MPI_Recv (state);

}

MPI_Isend (token , next ring node , termination probing);

TokenValid = false ; /* token sent away ... */

} } } /* StableCondTokenProc () */

/* True iff token valid and nothing can be done locally */

bool TknVldAndNthngToDo () {

i f ( TokenValid && worker sleeping ) {

Try DoSends () , then ProcessMessages ();

return (no operation performed );

}

return false;
} } /* TknVldAndNthngToDo () */

/* Processes incoming termination probing messages */

ReceiveTermProb () {

token = MPI_Recv (ANY_SOURCE , termination probing);

TokenValid = true;
i f ( TknVldAndNthngToDo ()) {

/* basing on local information , the computation can be

terminated */

i f (! IAmRoot ()) {

/* rehop the token , after having modified it */

token.snt += # MPI_Isend (state);

token.rcvd += # MPI_Recv (state);

MPI_Isend (token , next_ring_node , termination probing );

TokenValid = false ; /* token sent away ... */

} else { /* the token has finished its tour */

i f ( token.snt + # MPI_Isend (state) ==

token.rcvd + # MPI_Recv (state))

End(true);
/* otherwise , the computation will continue */

} } } /* ReceiveTermProb () */

Fig. 4. Communication thread (functions for termination)
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The token message chain can be started only by the root node and ends
when the root node receives the token back by the last node. Since every
node updates the global sent and received message counting on the token
before forwarding it, if the root finds the two counter to match then the
parallel computation is over. In fact, this implies that all the nodes are
inactive (i.e. with the worker thread sleeping) and all messages that have
been sent have also been received.

– termination; message of this kind are always broadcasted by one node to
all the others. Namely, the source can be either the root node (when the
termination probing is successfully terminated) or any node. In the first
case, all the reachable states have been globally visited, and the system is
correct w.r.t. the invariant property φ we want to verify. In the second case,
there is an error state somewhere (i.e. a state s such that φ(s) = 0), and the
termination message will be sent by the node which has discovered it (note
that it could be also the root node, and that more than one error state could
be discovered at the same time by different nodes).

2.2 The Communication Queue Mechanism

A more detailed description is needed for the communication queue handling
(i.e. CommQueue in Figures 2 and 3). The purpose of this data structure is to
avoid sending each state separately: on the contrary, it allows to group up as
many states as reasonable, thus reducing the communication overhead. Of course,
grouping is possible only if the destination is the same, thus there is a commu-
nication queue for every possible destination node4.

Differently from Q, which is a traditional FIFO queue (storing pairs (state,
boolean)), each communication queue is organized as an array of arrays of states.
We will refer to each array of states as a line, thus our parallel algorithm depends
on two parameters:

NumLines the number of lines used;
LineSize the number of states for each line.

In Figures 2 and 3, there are four functions accessing CommQueue. In order
to explain how they work, we have to say that at every execution time there is
only one active line (i.e. the line on which the states are currently added), while
the other lines status can be:

waiting to be sent these lines already contain all the LineSize states they are
allowed to, and they are waiting to be sent;

currently being sent also these lines are filled up, but they have already been
passed to MPI Isend; however, the sending operation is still not terminated.
Following the MPI standard specification, the contents of these lines cannot
by accessed until the sending operation has been successfully completed;

4 Indeed, our implementation uses NumNodes−1 communication queues per node, while
in Figure 2 NumNodes queues are declared. This allows to simplify our pseudocode.
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waiting to be active these lines contain no states, or have already been suc-
cessfully sent, so their content can be overwritten with new states.

Thus, three line index lists are maintained, one for each of these line types;
we will call the former list WTBS, the second one CBS and the latter WTBA. Initially,
the first line is the active one, WTBA contains all the other NumLines− 1 lines
and WTBS and CBS are empty.

We are now ready to give the semantics of the four functions manipulating
commQueue:

Enqueue line(CommQueue, state) called by the worker thread, adds state at
the end of the active line of CommQueue. It also handles the active line filling,
by properly modifying WTBS and WTBA.

Dequeue line(CommQueue) called by the communication thread, returns the
first line ready to be sent in CommQueue, and properly modifies WTBS and
CBS. If there are no ready lines, and the worker thread is sleeping, then the
active line is returned.

lines ready(CommQueue) returns true if Dequeue line returns (a line with) at
least one state.

Free lines(CommQueues) calls MPI Test on all the lines currently being sent
(no matter which queue they belong). Those lines passing the test are moved
to the WTBA list.

A more detailed pseudocode describing these function can be found in Fig. 5
Summing up, the evolution of a line status is shown in Fig. 6, where we use

the list acronyms to denote the status of the lines that are stored in them. As
for the events causing the status transitions, if l is the line under analysis then
the following holds:

1. is triggered when a call to Enqueue line fills up the active line and l is the
first of the WTBA list;

2. is triggered when a call to Enqueue line fills up the active line (which coin-
cides with l)

3. is triggered when a call to Dequeue line returns l;
4. is triggered when a call to Free line finds l to be entirely sent.

Finally, note that the initial state of the automaton in Fig. 6 is Active for
the first line in the lines array, and WTBA for all the others.

2.3 Algorithm Rationale

In parallel algorithms for model checking proposed to date, nodes alternate be-
tween state generation, state sending, and state receiving. With only one thread
available, providing maximal overlap between these activities requires the use of
non-blocking MPI communications amidst the rather intricate state generation
steps of a model checker. This can render the code brittle, non-portable, and
ultimately inadequately concurrent. In contrast, in our design, state generation
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/* Puts s in the active line , and handles filling */

void Enqueue_line ( FIFO_Queue_line Q, state s) {

while (1) { /* breaked once there is an active line */

i f (Q. active_line is defined ) {

Q.active_line = Q. active_line ∪ s;

i f ( length(Q.active_line ) == LineSize ) {

Q.WTBS = Q.WTBS ∪ Q.active_line ;

i f (Q.WTBA == ∅) undefine Q. active_line ;

else {

Q. active_line = head (Q.WTBA );

Q.WTBA = tail (Q.WTBA );

Clear(Q.active_line );/* length(Q.active_line ) == 0 */

} }

break; /* exits while (1) */

}

i f ( Terminate ) break; /* exits while (1) */

i f (too much iterations without an active line found)

pthread_yield (); /* yields to the communication thread */

} } } /* Enqueue_line () */

/* Returns a line that can be sent away */

state_array Dequeue_line (FIFO_Queue_line Q) {

i f (Q.WTBS 6= ∅) {

ret = head (Q.WTBS );

Q.WTBS = tail (Q.WTBS );

Q.CBS = Q.CBS ∪ ret;

return ret;

}

else i f ( worker sleeping ) return Q. active_line ;

else return NULL ;

} /* Dequeue_line () */

bool lines_ready () { /* Can something be sent ? */

i f ( Dequeue_line can return at least one state)

return true;
else return false;

} /* lines_ready () */

/* Checks for sending completion */

void Free_lines (FIFO_Queue_lines Qs) {

foreach computing node n different from MPI_MyRank () {

foreach line l in Qs[n]. CBS {

i f ( MPI_Test (l)) {

Q.WTBA = Q.WTBA ∪ l; /* with length(l) == 0 */

remove l from Q.CBS;

} } } } /* Free_lines () */

Fig. 5. Communication queue handling
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WTBA Active WTBS CBS(1) (2) (3)

(4)

Fig. 6. Evolution of a line status

and communication are in two threads which, on an increasing number of hard-
ware platforms, map onto multi-core CPUs. Through the use of threading and
the lines queues, we minimize the time that a worker spends in a waiting state.
The threading itself allows the worker not to be kept wait for communication
handling. In fact, there are only two other events that cause the worker thread
to wait:

– When the consumption queue is empty (function ParTerminate in Figure 2);
in this case, the worker thread enters a sleeping status, waiting for some other
node to send some new states, or for termination. However, the wait for new
states to be processed could be extended if the communication threads keep
sending small lines (i.e., containing too few states) to the other nodes. It
should be clear that it is more convenient to send as many states as possible
in one shot. To achieve this, it is sufficient to set LineSize to an adequately
high number. Note however that setting this parameter to a too high number
may cause a delay in the sending of the states, thus causing other nodes to
be idle.

– When there are no available lines in WTBA of the communication queue for
some node; thus, all the lines are in WTBS or CBS (in this case, the worker
loops in the while(1) statement of function Enqueue lines in Figure 5).
In this case, after a given number of attempts, the worker thread yields to
the communication thread, so that some line becomes available earlier. Note
that at each iteration the worker also checks if Terminate has been set as
a result of receiving a termination message (without this check, deadlocks
are possible if a termination message is received when the worker is inside
Enqueue lines). This problem can be mitigated by properly choosing the
number of lines and their length. If there are too few lines, then the worker
thread will often be stopped in a waiting status when trying to submit states
to the communication queues. Thus, the parameter NumLines should be as
high as possible.

However, NumLines and LineSize cannot be set indefinitely high, since they
are memory consuming: e.g., if 10 bytes are needed to represent a state in a
given model to be verified, then having 1024 lines each with 1024 states on a
50-nodes computation will result in about 500MB RAM memory requirement
for each node. This will reduce the space for hash table and consumption queue,
so affecting the worker thread performances.
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Fortunately, we will show that 1024 or 512 states are a good value for
LineSize, whilst NumLines can be much smaller, e.g. 8 or 16. In fact, the number
of lines merely needs to be large enough to allow overlap of the two threads.

3 Experimental Results

To assess the feasibility of our approach, we implemented our parallel algo-
rithm within the model checker Murphi [21]. We will call the resulting verifier
Eddy Murphi [22].

We use Eddy Murphi to run different kinds of experiments. All the exper-
iments we run are computed as an average over at least two runs, and were
repeated until an acceptable standard deviation was reached (all details pro-
vided at [11]).

Initially, we tune the communication parameters, i.e. the number of lines
(NumLines), and the size of each line (LineSize). To do this, we use the pro-
tocol sci [15], available within the standard Murphi distribution, modifying its
parameters in a way such that it has now a fairly high number of states (approx.
2.7 × 106). We then run different verifications on sci, changing the values for
NumLines and LineSize; these values, as already said in Sect. 2.3, are chosen to
be low for NumLines and high for LineSize; we also change the number of nodes.
The results are in Table 1, where NL stand for NumLines, LS for LineSize and
Time % is the ratio between the execution time for Eddy Murphi and the ex-
ecution time for standard Murphi. In Table 1, we report only the four best
configurations for our parameters, ordered by decreasing time. It is clear that
the best results are obtained with 1024 states for each line, and with a number
of lines between 8 and 32. To keep memory occupation small enough, we choose
8 lines with 1024 states each.

40 Nodes 20 Nodes 10 Nodes

NL LS Time % NL LS Time % NL LS Time %

32 1024 0.023984 32 1024 0.046594 16 1024 0.106446

16 1024 0.023989 2 1024 0.046677 32 1024 0.106805

8 1024 0.024058 16 1024 0.046717 8 1024 0.106833

2 1024 0.024136 8 1024 0.046884 1 512 0.107657

Table 1. Experimental results for the parameter tuning, carried out on a multi-core
120-nodes cluster; each node has 2 Intel XEON processors at 2.4 GHz, with 2GB of
RAM

Next, we use these parameters values to compare the performances of
Eddy Murphi with (standard) Murphi. In these experiments we use five pro-
tocols from the Murphi distribution, in order to be able to compare the perfor-
mances of Eddy Murphi vs Murphi. These protocols have been chosen in such a
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way that their number of states is high enough to make the use of parallel model
checker meaningful; indeed, they all have between 106 and 108 states.

The results are in Fig. 7, where we graph the speedup obtained by Eddy Murphi

w.r.t. Murphi (the inverse of Table 1, i.e.
Eddy Murphi time

Murphi time ) as a function of the

number of compute nodes. Fig. 7 shows that we obtain a nearly linear speedup
on almost all the examples, and that on all examples we are considerably faster
than standalone Murphi.
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Fig. 7. Experimental results for performances comparison with standard Murphi, car-
ried out on the same cluster of Table 1

Note that a previous parallel version of Murphi was already developed [23].
We could not re-run the parallel Murphi implementation of [23] because it was
developed for the Berkeley NOW hardware which is unavailable. However, when
using an MPI porting (reported by [16]), we do not observe the speedup men-
tioned in [23], and it is always much slower than standard Murphi. This is proba-
bly due to the fact that now CPUs are faster, and that the clusters network used
in [23] are optimized for message passing, which is not the case with MPI, that
privileges the portability. Parallel Murphi implementations were also reported
by [17], but we were not able to obtain a reliable version of this code.

Finally, we present a very large protocol whose verification is not feasible
on a standalone machine. This is the case of the FLASH protocol [24] with
5 processors and 2 data values as parameters. This protocol has more than
3 × 109 states, and its verification with standard Murphi would require a huge
amount of RAM memory (assuming 40 bits for each state in hash compaction, we
would need 15 GB of RAM for the hash table only), as well as an unacceptable
computational time. On the other hand, by using a disk version of Murphi [10],
the computation lasts more than 1 week (we do not know the exact amount
of time, but a projection based on the first part of the verification leads to a
probable execution time of 3 weeks). However, we successfully completed the
verification of this protocol with Eddy Murphi on 60 nodes in approximately 9
hours.
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4 Conclusions

We have developed a novel algorithm and an associated framework for shared
memory and distributed memory model checking of safety properties, called
“Eddy.” This is the first such model checker that we are aware of. Eddy meets
many goals that we had originally set forth. One important goal was to ensure a
clean separation of concerns between next-state generation and communication
during distributed model checking. This, in turn, has several advantages. One
advantage is that it makes the code easier to understand, validate, and modify.
It also helps make the model checking framework more generic by allowing us
to replace the next-state generation logic (e.g., switch over from, say, Murphi
to SPIN or Zing) without changing the communication management part very
much. Another advantage is the vastly increased concurrency possible when the
next-state generation and communication management activities are run as two
separate threads. Last but not least, the two threads running per node of Eddy
can exploit the two separate CPUs of dual-core CPUs that will become widely
available soon. These threads will then have lower or no context-switch over-
heads, and also utilize the cache memories of the CPUs much more effectively.
Eddy optimizes communication in several ways: (i) by not sending individual
states, but rather much more bulky units that collect several states before ship-
ment, the interconnection utilization vastly improves. (ii) by performing multiple
asynchronous sends in an overlapped manner, the overall throughput improves.

Our experiments confirm that the Eddy algorithm is quite robust and scales
extremely well on a wide variety of nodes as well as communication parame-
ters such as those controlling state aggregation. In particular, large instances of
the Stanford FLASH protocol that cannot be verified through sequential model
checking on powerful uniprocessors can now be verified quite fast using multiple
nodes. The measurements reported in this paper indicate the actual speed-ups
obtained as well as the impact of line sizes and the number of lines on perfor-
mance.

As part of future work, we hope to combine other optimizations with Eddy.
Some of the ideas under consideration are: (i) the use of other ways to record
visited states per node, including disk-based algorithms [10], and the use of
minimal automata [25], (ii) the use of thread-pools if multiple CPUs are available
per node (e.g. hyper-threaded multi-cores), and (iii) self-calibrating versions of
Eddy that set its communication thread parameters based on the measured
network characteristics.
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